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Swarm robotic search aims at searching targets using a large number of collaborating
simple mobile robots, with applications to search and rescue and hazard localization. In
this regard, decentralized swarm systems are touted for their coverage scalability, time effi-
ciency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes
of approaches are available, namely, nature-inspired swarm heuristics and multi-robotic
search methods. However, the ability to simultaneously achieve efficient scalability and
provide fundamental insights into the exhibited behavior (as opposed to exhibiting a
black-box behavior) remains an open problem. To address this problem, this paper
extends the underlying search approach in batch-Bayesian optimization to perform
search with embodied swarm agents operating in a (simulated) physical 2D arena. Key con-
tributions lie in (1) designing an acquisition function that not only balances exploration and
exploitation across the swarm but also allows modeling knowledge extraction over trajec-
tories and (2) developing its distributed implementation to allow asynchronous task infer-
ence and path planning by the swarm robots. The resulting collective informative path
planning approach is tested on target-search case studies of varying complexity, where
the target produces a spatially varying (measurable) signal. Notably, superior perfor-
mance, in terms of mission completion efficiency, is observed compared to exhaustive
search and random walk baselines as well as a swarm optimization-based state-of-the-
art method. Favorable scalability characteristics are also demonstrated.
[DOI: 10.1115/1.4046587]
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1 Introduction
Swarm robotic search is concerned with searching for or localiz-

ing targets in unknown environments with a large number of collab-
orative robots. There exists a class of search problems in which the
goal is to find the source or target with maximum strength (often in
the presence of weaker sources) and where each source emits a spa-
tially varying signal. Potential applications include source localiza-
tion of gas leakage [1], nuclear meltdown tracking [2], chemical
plume tracing [3], and magnetic field and radio source localization
[4,5]. In such applications, decentralized swarm robotic systems
have been touted to provide mission efficiency, fault tolerance,
and scalable coverage advantages [6–8] compared to sophisticated
standalone systems. Decentralized search subject to a signal with
unknown spatial distribution usually requires both task inference
and planning, which must be undertaken in a manner that maxi-
mizes search efficiency and mitigates inter-robot conflicts. This in
turn demands decision algorithms that are computationally light-
weight (i.e., amenable to onboard execution) [9], preferably
explainable [10], and scalable [11]—it is particularly challenging
to meet these characteristics simultaneously.
In this paper, we perceive the swarm robotic search process to

consist of creating/updating a model of the signal environment
and deciding future waypoints thereof, so as to collectively find
the target source (location with maximum signal strength) as fast
as possible. Specifically, we design, implement, and test a novel
decentralized algorithm founded on a Bayesian search formalism.

This algorithm tackles the exploration/exploitation balance over tra-
jectories (as opposed to over points, which is typical in
non-embodied search) while allowing asynchronous decision-
making. In this context, we also explicitly consider other constraints
attributed to the embodiment of the search process, e.g., individual
robot’s speed and rage constraints. The remainder of this section
briefly surveys the literature on swarm search algorithms and con-
verges on the contributions of this paper.

1.1 Swarm Robotic Search. In time-sensitive search applica-
tions under complex signal distributions, a team of robots can
broaden the scope of operational capabilities through distributed
remote sensing, scalability, and parallelism (in terms of task execu-
tion and information gathering) [12]. The multi-robot search para-
digm [11] uses concepts such as cooperative control, model-driven
strategies [13], Bayesian filter by incorporating mutual information
[14], strategies based on local cues [15], and uncertainty reduction
methods [16]. Scaling these methods from the multi-robotic (<10
agents [11]) to the swarm-robotic level (10–100 agents) often
becomes challenging in terms of online computational tractability.
A different class of approaches that is dedicated to guiding the

search behavior for larger teams is based on nature-inspired
swarm intelligence (SI) principles [17–19]. SI-based heuristics
have been used to design algorithms both for search in
non-embodied n-dimensional space (e.g., particle swarm optimiza-
tion) and for swarm robotic search [20,21]. Majority of the latter
methods are targeted at localizing a single source [9,22]. A
notable exception is the Glowworm optimization-based algorithm
reported by Krishnanand et al. [18]. This approach was shown to
handle multi-modal source localization by assuming robots are
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initially distributed in the search space, with its effectiveness relying
on the usage of adaptive parameters (e.g., changing inertia weight)
[22]. The localization of the maximum strength source in the pres-
ence of other weaker sources (i.e., given a multi-modal spatial
signal-distribution), without making assumptions such as distribu-
ted starting points, remains a challenging problem.
Translating optimization processes: Similar in principle to some

SI approaches, here we aim to translate an optimization strategy
[23], namely, Bayesian optimization, to perform search in the phys-
ical 2D environment. In doing so, it is important to appreciate two
critical differences between these processes: (1) movement cost:
unlike optimization, in swarm robotic search, moving from one
point to another may require a different energy/time cost depending
upon the environment (distance, barriers, etc.) separating the current
and next waypoints. (2) Sampling over paths: robots usually gather
multiple samples (signal measurements) over the path from one
waypoint to the next (as sampling frequency ≫ waypoint fre-
quency), unlike in optimization where we sample only at their
next planned point. This “sampling over paths” characteristic has
received minimal attention in existing SI-based approaches.
Moreover, with SI-based methods, the resulting emergent beha-

vior, although often competitive, raises questions of dependability
(due to the use of heuristics) and mathematical explainability
[24]. The search problem can be thought of as comprising two
main steps: task inference (identifying/updating the signal spatial
model) and task selection (waypoint planning). In SI methods, the
two steps are not separable, and a spatial model is not explicit. In
our proposed approach, the processes are inherently decoupled—
robots exploit Gaussian processes (GPs) to model the signal distri-
bution knowledge (task inference) and solve a 2D optimization over
a special acquisition function to decide waypoints (task selection).
Such an approach is expected to provide explainability, while pre-
serving computational tractability.

1.2 Objective of This Paper. This paper is an extension of our
recent work presented in the ASME 2019 IDETC/CIE conference
[25]. In this paper, we develop (an explainable) decentralized and
asynchronous swarm robotic search algorithm, subject to the fol-
lowing assumptions: (i) all robots are equipped with precise locali-
zation and (ii) each robot can communicate their knowledge, state,
and decisions with all neighbors (full observability) at waypoints. In
asynchronous decision-making, agents/robots take decision in an
event-driven scheme, as opposed to a synchronous approach
where all robots need to take decisions at fixed intervals. The asyn-
chronous decision-making is critical in most real-world settings,
due to the presence of stochastic action effects and imperfect and
unreliable communication [26]. In addition, it has been shown
that having asynchronous parallel sampling in Bayesian optimiza-
tion (the motivating algorithm behind our proposed search
method) can improve the optimization progress in comparison to
synchronous implementations [27]. Decentralized decision-making
here relates to how each swarm robotic agent independently plans
its immediate future waypoint.
Within this context, the primary contributions of this paper lie in

the following developments: (1) a novel decentralized algorithm
(Bayes-Swarm) that extends Gaussian process modeling (to update
over trajectories) and integrates physical robot constraints and
other robots’ decisions to perform informative path planning—
simultaneously mitigating knowledge uncertainty and getting closer
to the source—and (2) a simulated parallelized implementation of
Bayes-Swarm to allow asynchronous search planning over complex
multi-modal signal distributions.
The remaining portion of the paper is organized as follows: the

next section presents the problem definition and GP modeling.
Then, our proposed decentralized algorithm (Bayes-Swarm) is
described. Numerical experiments and results, encapsulating the
performance of these methods on different-sized swarm and a para-
metric analysis of the proposed decentralized method, are then pre-
sented. The paper ends with concluding remarks.

2 Background
2.1 Gaussian Process Model. GP models [28] are probabilis-

tic surrogate models that have been used successfully in different
applications such as modeling the objective function in Bayesian
optimization [29]. If we have a set of n observations of an environ-
ment, D = xi, yi|i = 1, . . . , n, then we can write the following equa-
tion by assuming that the observed values y differ from the function
f(x) values by an additive noise ϵ, where x denotes an input vector:

y = f (x) + ϵ (1)

By assuming that the noise follows an independent, identically dis-
tributed Gaussian distribution with zero mean and variance σ2n, we
have ϵ ∼ N (0, σ2n). The function f(x) can be estimated by a GP with
mean function μ(x) and covariance kernel σ2(x) given by

f (x) ∼ GP μ(X), σ2(X)
( )

(2)

where

μ(x) = Λ(x)(y −Φβ) (3)

σ2(x) = k(x, x) − Λ(x)kn(x) (4)

Λ(x) = kn(x)T [K + σ2n(x)I]
−1 (5)

Here, Φ is the vector of explicit basis functions and K =K(X, X|θ)
is the covariance function matrix such that (K)ij= k(xi, xj) and
kn(x) = [k(x1, x), …, k(xn, x)]

T. In this paper, the hyper-parameters
of the GP model are optimized by maximizing the log-likelihood
P as a function of β, θ, σ2n:

β̂, θ̂, σ̂2n = argmax
β,θ,σ2n

logP(y|X, β, θ, σ2n) (6)

where

logP(y|X, β, θ, σ2n) = −
1
2
(y −Φβ)TΛ(x)−1(y −Φβ)

−
Ns

2
log 2π −

1
2
log |Λ(x)| (7)

3 Swarm Bayesian Algorithm
3.1 Bayes-Swarm: Overview. The robot behaviors including

its motion, communication, and decision-making are illustrated in
Fig. 1 and the pseudocode of our proposed decentralized
Bayes-Swarm algorithm is depicted in Algorithm 1. Each robot in
a team of size Nr is assumed to run the Bayes-Swarm algorithm at
each decision-making step (i.e., after reaching its waypoint) to
take the best action by maximizing an acquisition function that
guides the team to the source location over the course of the oper-
ation. Importantly, these decision-making instances need not be
synchronized across robots, unlike several other existing decentral-
ized implementations. Before elaborating on the mathematical for-
mulation of each component of the Bayes-Swarm algorithm, we
provide here a brief description of how the overall algorithm
works, using Fig. 1 as reference. At the beginning of the mission,
the robots do not have any observations from the environment,
and thus no belief model to follow (as the default setting); prior
knowledge, if available in a practical application, can however be
readily incorporated as a prior belief model in our formulation.
By default, in the “Select First Waypoint” block in Fig. 1, each
robot chooses a waypoint such that the heading directions of the
team are somewhat uniformly distributed over the domain of inter-
est. Then, each robot shares its decision with its peers and starts
moving toward the planned waypoint. During its movement, each
robot takes location-tagged signal measurements (observations) at
a fixed sampling rate. Once the robot reaches the planned waypoint,
it runs a check for ending the mission (based on algorithm
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termination criteria), and if unsatisfied, it proceeds to decide its next
waypoint. This generic planning process involves four major sub-
steps, represented by the four blocks inside the “Waypoint Plan-
ning” block in Fig. 1. First, the robot combines its own recent obser-
vations with the recent observations received (over a wireless
network) from its peers, and then down-samples the new data set
for preserving the tractability of onboard updating of the GP
model. Subsequently, it uses the new data set to update its
GP-model-based acquisition function. The next waypoint is then
determined by maximizing this acquisition function, subject to
certain range constraints. Each robot then creates an information
packet (“Prepare Packet” block in Fig. 1) comprising a down-
sampled version of its recent observations and its decided next way-
point, and broadcasts that information to all peers, before moving to
its next waypoint. This procedure is then repeated until the target of
interest is found or other mission termination criteria (e.g.,
maximum endurance of robots) are reached.

3.2 Acquisition Function. For swarm robotic search, it is
important to design an acquisition function that accounts for the
characteristics of the embodied search process, i.e., where (i) data
are collected and uncertainty is reduced over trajectories and not
over separate points in the domain of interest and (ii) robots can
only travel finite distances constrained by their maximum speed
over a given time-step. Here, we design our own acquisition func-
tion partly motivated by the work of Morere et al. [30]. However, in
the future, there remains opportunity to translate other well-known
acquisition functions such as GP-upper confidence bound
(GP-UCB) [31] and q-expected improvement (q-EI) [32] from the
Bayesian optimization (BO) and batch-BO domain [23] to suit
the needs of swarm robotic search. Below, we describe our
unique design of the acquisition function, and how it is used by
each robot for waypoint planning.
Robot-r solves an optimization problem based on its information

(D1:kr and X̂
kr
−r), including self-observations and shared peers’

observation from the beginning of the mission till the decision-time
kr(D1:kr =

⋃Nr
r=1

⋃kr
i=1Di

r;Di
r = [Xi

r , y
i
r]) and the current local peers’

next waypoint (X̂
kr
−r =

⋃
p=1;p≠r X̂

kr
−rp). For the rth robot, our math-

ematical formulation of the acquisition function can be expressed as

xk+1r = arg max
x∈X kr

(
α · hr(x, D1:kr ) + (1 − α)gr(x, D1:kr , X̂

kr
−r)

)
(8)

s.t.

0 ≤ lkrs = ‖x − xkrr ‖ ≤ VT (9)

where the first term, hr(.), leads robot r to the expected location of the
source (exploitation) and the second term, gr(.), minimizes the
knowledge uncertainty of robot r. The coefficient α∈ [0, 1] repre-
sents the exploitation weight, i.e., α= 1would lead to purely exploit-
ative behavior. The length (ls) of the path s is bounded based on the
decision-horizon T and the nominal velocity of the robots (V). The
individual terms of the acquisition function are described next.

Algorithm 1 The Bayes-Swarm algorithm

Input: GPr, xr,Xkr−r—the current location and recent observations of the
robot ( x), and the next waypoints of its peers (Xkr−r).
Output: xkr+1

r —the next waypoint of robot-r at its iteration kr .
1: procedure takeDecision(r, kr,Nr,Δθ)
2: if kr = 0 then
3: xkrr ← takeFirstDecision(r, kr,Nr,Δθ)
4: else
5: if Size of Dkr

r > Nmax then ⊳Nmax = 400
6: Down-sample Dkr

r to Nmax observations
7: xkrr ← by solving the optimization, Eq. (8)
8: kr ← kr + 1
9: return xkrr , kr
10: procedure takeFirstDecision(r,Nr,Δθ,V, T)
11: d ← VT
12: if Δθ = 360 then ⊳Δθ: Initial feasible direction range
13: θ ← rΔθ/Nr

14: else
15: θ ← rΔθ/(Nr + 1)
16: x1r ← [d cos θ, d sin θ]
17: return x1r

3.3 Source Seeking Formulation
The source location is the optimum point of the source signal. In

this approach, robots model the source signal using a GP and the
location with the maximum expected value based on their then-
current GP model of the environment would represent the greedy
(exploitive) choice at each waypoint planning instance. Due to
the motion constraints of the robot and limited decision-time
horizon, all such locations may not be a feasible choice. To consider
this factor, we define the source seeking term as follows:

hr(x, D) =
1

1 + (x − �x*)T (x − �x*)
(10)

where �x* = argmax�x μ(�x).

3.4 Knowledge-Gain Formulation
As we mentioned in the first section, robots typically gather infor-

mation over their path; therefore, different paths cause different
knowledge-gains. This concept is known as informative path plan-
ning, where robots plan paths such that best/maximum possible
information is extracted. In this paper, we are interested in paths
that minimizes the uncertainty in the robots’ belief (knowledge),
which is analogous to maximizing the knowledge-gain. For this
purpose, we are estimating the uncertainty in the belief (modeled
by a GP) based on the gathered observations and the planned
future observations (other robots’ planned paths). We thus define

Fig. 1 Bayes-Swarm architecture for each robot in the swarm
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the knowledge-gain as follows:

gr(x, D, X̂) =
∫
s(x)

σ(s(u)) du (11)

where the path is written in the parametric form as

s(u) = ux + (1 − u)xkrr ; u ∈ [0, 1] (12)

3.5 Information Sharing
Inter-robot communication is a key element of any swarm

system, and robots often require to communicate with each other
over an ad hoc wireless network in outdoor applications.
However, given the bandwidth limitations of ad hoc wireless com-
munication and the energy footprint of wireless communication
[33], it is typically desirable to reduce the communication burden.
To this end, in our proposed method, the decision-making is
allowed to be asynchronous and robots share only a down-sampled
set of observations. Table 1 provides a quick overview of the type
and frequency of the information shared by each robot with all its
peers across the swarm. Algorithm 2 lists two procedures that
each robot uses to share or receive information. Robots then
proceed to individually update their respective knowledge model
based on their own information and the future plan of its peers.
Having presented an overview of the Bayes-Swarm method, the
next section introduces its distributed virtual implementation, case
studies developed to test the performance of Bayes-Swarm, and
the corresponding implementation settings that we used.

Algorithm 2 Communication procedures

1: procedure receiveInformation r, p, x
kp
p ,D

kp
p

2: D1:kr
r ← D1:kr

r

⋃
D

kp
p

3: X̂kr−rp(1 : 2) ← X̂kr−rp(3 : 4)
4: X̂kr−rp(3 : 4) ← x

kp
p

5: return D1:kr
r , X̂kr−rp

6: procedure sendInformation r, xkrr ,D
kr
r

7: if kr = 0 then
8: Broadcast xkrr ⊳4 bytes
9: else
10: Broadcast { xkrr ; Dkr

r } ⊳4+ 6T bytes

3.6 Downsampling Collective Swarm Observations
In order to keep the Bayes-Swarm algorithm scalable and compu-

tational tangible, we are required to downsample the collective data
set of the swarm (i.e., observations made by the agents). This is
because updating the GP models presents a cubic time complexity
(O(n3)) with respect to the size (n) of the data set. In this work, we
use a simple downsampling approach, known as sample rate com-
pression by an integer factor M [34]. This approach reduces the
data set by keeping the first sample and then every M-th sample
after the first, where M = ⌈size(D1:kr )/Nmax⌉.

4 Numerical Experiments and Case Studies
4.1 Distributed Virtual Implementation of Bayes-Swarm.

In order to enable a better representation of the distributed planning
process embodied by a physical swarm of robots, we develop a
simulated environment that provisions a parallel computing
deployment of Bayes-Swarm. This uses “MATLAB’s” parallel pro-
graming capabilities to invoke 40 dedicated threads. Each robot
operates (the behavior illustrated in Fig. 1) in parallel with
respect to the rest of the swarm, updating its own knowledge
model after each waypoint and deciding its own next waypoint.
The entire process is simulated in a virtual environment developed
with MATLAB R2017b and is executed on a workstation with Intel®

Xeon Gold 6148 27.5M Cache 2.40 GHz, 20 cores processor and
196 GB RAM. The simulation time-step is set at 1 ms. Robot set-
tings: we set the velocity of each swarm robot at 10 cm/s based on
the specifications of e-puck 2 [35]. The observation frequency is set
at 1 Hz. To keep the computational complexity of refitting the GP
low, the size of data (D1:kr

r ) used by each robot is downsampled to
400 (i.e., when it grows beyond 400 in the latter stages of the
mission).

4.2 Case Studies. We design and execute a set of numerical
experiments to investigate the performance of the proposed decen-
tralized Bayes-Swarm approach. In order to provide an insightful
understanding of the Bayes-Swarm algorithm, three types of tests
are conducted for all case studies and the results are evaluated and
compared in terms of completion time, cost incurred by robots,
knowledge-gain per robot, and mapping error. Mapping error mea-
sures how the estimated response surface using GP deviates from
the actual response surface of the source in terms of the
root-mean-square-error metric. The three tests are described next.
Experiment 1: a parametric analysis is conducted to study how the
exploitation coefficient of Bayes-Swarm affects its performance.
Experiment 2: a scalability analysis is conducted to investigate the
performance of Bayes-Swarm across multiple swarm sizes. Experi-
ment 3: Bayes-Swarm is run using the default values listed in
Table 2 to analyze its performance in response to different single-
and multi-modal spatial distribution of signal strength, and results
are compared with those of standard exhaustive search and
random walk methods. Experiment 4: The performance of
Bayes-Swarm is comparedwith that of glowwormoptimization algo-
rithm proposed by Krishnanand et al. [18], tested on case study 5.
To conduct the first three experiments stated above, five distinct

case studies are defined, each corresponding to a different spatial
distribution of the signal strength, as shown in Fig. 2. The first
case study is a large convex source signal distribution and the rest
of the case studies are non-convex multi-modal signal distributions
(involving multiple signal sources). Case study 4 is expected to be
the most challenging case as it contains one global maxima (target
source) and five local maxima (weaker sources) in a large arena.
Case study 5, adopted from Ref. [36], contains one global
maxima (target source) and two local maxima (weaker sources).
In this paper, Bayes-Swarm utilizes two termination criteria

during operation. The primary criterion terminates the search if
any robot arrives within ϵ-vicinity of the source signal location.
In addition, Bayes-Swarm terminates if the operation reaches a
maximum allowed search time (Tmax). The distance threshold ϵ is
set at 5 cm and the maximum search time Tmax is outlined for

Table 1 Content, size, and frequency of information shared by
robot r via communication across the swarm

Property Descriptions

Inter-robot communication
frequency

After each waypoint planning
instance

Content of transmitted data (1) Its next location to visit (xkrr ) and
(2) its observations over the last path
(Dkr

r )
Average size of outgoing data
packets (with time-horizon 1 min)

364 bytes

Table 2 Maximum allowed search time, Tmax (in s), for case
studies

Case study 1 2 3 4 5

Bayes-Swarm 500 100 500 700 100
Random-walk 4000 50,000 60,000 60,000 10,000
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each case study in Table 2. The decision-time horizon (T) is set at
4 s for the first decision-making step; then it changes to 10 s for
the later decision-making steps.

4.3 Demonstrating Bayes-Swarm: Case Study 2. Figure 3
depicts four snapshots of the Bayes-Swarm algorithm for case

study 2 with four robots and α= 0.4. It can be seen from this
figure that how the estimated knowledge model and its uncertainty
improves by exploring the search space. The top figures show the
uncertainty map (σ(x)) and the bottom figures show the robot loca-
tion and its knowledge state (dashed contours). In the bottom
figures, the gray solid contours represent the actual source signal
(ground truth) and the gray dashed contours represent the source

Fig. 2 Five case studies with source distributions of different levels of complexity. (a) Case study 1: large arena, convex
signal distribution; (b) case study 2: small arena, non-convex signal distribution; (c) case study 3: large arena, non-convex
signal distribution; (d) case study 4: large arena, highly multi-modal signal distribution; (e) case study 5: small arena, multi-
modal signal distribution (given in Ref. [36]).

Fig. 3 Snapshots for case study 2 with four robots that run Bayes-Swarm with α=0.4. The top figures show the uncertainty map
(σ(x)) and the bottom figures show the robot and knowledge state. In the bottom figures, the gray solid contours represent the
actual source signal (ground truth) and the gray dashed contours represent the source signal (knowledge) model of a robot at
the stated time point. Blue solid lines show the paths that robots have already traveled and the observations over which have
been shared with all peers, assisting the refitting of their knowledge model. The red solid line shows the paths traveled but the
observations over which have not yet been shared with peers. The red dashed lines represent the paths that have been planned
but not yet traveled. (Color version online.)
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signal (knowledge) model of a robot at the stated time point. Blue
solid lines show the paths that robots have already traveled and
the observations over which have been shared with all peers, assist-
ing the refitting of their knowledge model. The red solid line shows
the paths traveled but the observations over which have not yet been
shared with peers. The red dashed lines represent the paths that have
been planned but not yet traveled.
From Figs. 3(a)–3(e), it can be seen that when robot 1 reaches its

first waypoint, only four self observations are available to it;, hence
it is able to build only a relatively inaccurate knowledge model (that
gives the expected location of the source at (1.6, 1.0), which is in
reality far away from both of the actual sources). When the last
robot (robot 4) takes decision, it has its peers’ observations at
t = 4+ s. The knowledge model (Fig. 3( f )) is still inaccurate, but
the uncertainty map (Fig. 3(b)) is improved. After 26 s (Figs. 3(c)
and 3(g)), the robots are able to converge to a fairly accurate knowl-
edge model of the signal distribution, and their future updates and
planning (seen in Figs. 3(d ) and 3(h)) puts two robots in the team
within the threshold of the source location at time t= 54 s.

5 Results and Discussion
5.1 Experiment 1: Parameter Analysis of Bayes-Swarm. In

the proposed decentralized method, there is one major prescribed
parameter that needs to be prescribed or tuned—the exploitation
coefficient parameter α—that regulates the balance between
exploration and exploitation. We run an experiment to study how

this exploitation coefficient parameter (α varying from 0 to 1)
affects the performance of Bayes-Swarm for the case studies 2
and 4, across multiple swarm sizes. Snapshots of the final state of
robots for three values of α for the case study 2 with four robots
are depicted in Fig. 4. The performance outcomes in terms of com-
pletion time, and mapping error are summarized in Figs. 5 and 6.
Pure source seeking (α= 1): One of the extreme case happens

when the knowledge-gain term is eliminated in the objective func-
tion; in this mode, robots try to reach the expected source location
faster without exploring the area (getting enough knowledge)—
basically the purely greedy approach. For this purpose, the exploi-
tation coefficient is set at α= 1. Figure 4(c) illustrates the behavior
of robots under this setting. It can be seen from this figure that the
estimated source signal or knowledge model is quite inaccurate due
to the lack of explorative search.
Only knowledge-gain term (α= 0): By setting α= 0, the objective

function (Eq. (8)) is reduced to the knowledge-gain term (Eq. (11)),
which results in purely explorative search. As expected, under this
setting, robots are able to estimate a relatively accurate model of
signal distribution (Fig. 4(a)). This mode is suited for mapping
applications, such as mapping offshore oil spills [12].
Combined source seeking and knowledge-gain terms—different

trade-offs (0 < α<1): By setting the exploitation coefficient α at
values between 0 and 1, we can tune the degree of exploration and
exploitation of the swarm search. Figures 5(b) and 6(b) show that
by increasing the exploitation coefficient from 0 to 1, the mapping
error increases, especially for α values beyond 0.3. Figure 4(b)
depicts the search behavior of the swarm for α= 0.4. In this setting,

(a) (b) (c)

Fig. 4 Performance dynamics of a four-robot team under different values of the exploitation/exploration balance coeffi-
cient (α), for case study 2. The solid line is the actual source signal distribution (ground truth) and the dashed line repre-
sents the extracted source signal distribution (knowledge) modeled by the robots. The red dot shows the actual source
location.

(a) (b)

Fig. 5 Parametric analysis of the exploitation/exploration balance coefficient (α) in case study 2 (small arena,
bi-modal signal distribution). For all runs, the maximum allowed search time is set at 100 s (Tmax=100). In this
case study, we provided two one-robot scenarios, Nr=1* and Nr=1, by setting the initial feasible direction (Δθ) at
0 deg and 45deg, respectively, to demonstrate the sensitivity of single robot performance on the initial uninformed
action.

051003-6 / Vol. 20, OCTOBER 2020 Transactions of the ASME



one robot successfully reaches the source location while other robots
are still exploring the search area.Dependingon the complexity of the
source signal distribution, the effect of exploitation coefficient
parameter on the estimation of the knowledge model will vary.
In terms of completion time, the complexity of the source signal

distribution and the initial path of robots play important roles. In
case study 2, the impact of α on completion time varies with the
size of the robot team (Fig. 5(a)). In case study 4, we can see
from Fig. 6(a) that Bayes-Swarm with α> 0.04 is not able to lead
the robots to find the target/source within the maximum allowed
time (700 s). In order to get the best performance, the exploitation
coefficient (α) needs to be less than 0.02. This is attributed to the
need for greater exploration in a multimodal environment. In
summary, for choosing the correct value of α to get the best perfor-
mance, we need to consider the number of robots, the complexity of
the source signal distributions, and the robots’ capabilities.

5.2 Experiment 2: Scalability Analysis of Bayes-Swarm. In
this experiment, we use case study 4 to perform an analysis of how
the size of the robot swarm impacts Bayes-Swarm’s performance.
To this end, we run Bayes-Swarm simulations with α= 0.4 and
swarm sizes varying from 2 to 100. Figure 7 illustrates the results
of this analysis in terms of the completion time, averaged
knowledge-gain of each robot (�g(x)), averaged number of decisions
per robot (�Nd), and mapping error. The results show that the perfor-
mance improves by increasing the size of the swarm from 2 to 100,
with completion time reducing by ∼41.3%. Moreover, the averaged
number of decisions (waypoint planning instances) per robot and
the averaged knowledge-gain per robot, respectively, decrease by
about 64% and 83.3% when the swarm size grows from 2 to 100.
Although the mapping error with 100 robots is 16.6% less than

the mapping error with 2 robots, increasing the number of robots
does not universally improve the mapping error, as evident from
the non-monotonic trend seen in the top right plot of Fig. 7
(unless α is tuned based on the size of swarm).
To summarize the observations made from Fig. 7, increasing the

size of swarms becomes increasingly effective for complex signal
distribution environments. However, beyond a certain swarm size
(∼20 in this analysis), there is a decreasing rate of improvement.
These observations provide strong evidence of the scalability of
the Bayes-Swarm method. At the same time, they highlight the
importance of identifying suitable team sizes for suitable mission
profiles, given resource constraints and time sensitivity of the
mission.

5.3 Experiment 3: Comparative Analysis With Baselines.
Exhaustive search and random-walk algorithms are implemented
along with Bayes-Swarm for comparative analysis. We test these
algorithms to find the source location in the five case studies, illus-
trated in Fig. 2. The settings of Bayes-Swarm are not individually
tuned for each case, in order to allow fair comparison; the exploita-
tion coefficient is set at 0.4 and T at 4 s. Table 3 summarizes the
results of this experiment in terms of the completion time. In this
experiment, the maximum allowed search time for random-walk
is adjusted to 1.5 times of what is needed by exhaustive search
for each case study environment. In case study 4, we partition the
arena into four parts and each robot searches one part using the
exhaustive search method. Note that, in this table, we only report
the best performance across five runs of the random-walk method
for each case.
The results show that the Bayes-Swarm algorithm performs sig-

nificantly better than the exhaustive search and random-walk

(a) (b)

Fig. 6 Performance dynamics of a ten-robot team under different values of the exploitation/exploration balance
coefficient (α), case study 4 (large arena, highly multi-modal signal distribution). For all runs, the maximum
allowed search time is set at 700 s (Tmax=700).

Fig. 7 Scalability analysis of Bayes-Swarm with α=0.4 and swarm sizes varying from 2 to 100, when applied to case study 4
environment
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approaches in all the five case studies. Due to the complexity of
some of the search environments, the random-walk method often
fails to find the source location within the allowed maximum
search time, as evident from its poor success rate in cases 1, 3, 4,
and 5. Table 3 shows that Bayes-Swarm finds the primary source
location about 5–100 times faster than exhaustive search in all
five cases. As the random-walk reaches the goal only in the first
two case studies, we compare Bayes-Swarm with the random-walk
method only in these case studies; Bayes-Swarm is observed to
perform 83 and 5 times faster than the random-walk method in
case studies 1 and 2.

5.4 Experiment 4: Comparing Bayes-SwarmWith a Swarm
Intelligence Method. To perform further comparative analysis of
Bayes-Swarm with a state-of-the-art method, the well-known
glowworm-based swarm search algorithm [18] is chosen. Specifi-
cally, we use the implementation of the glowworm algorithm avail-
able at Ref. [37]. For this analysis, both algorithms are run on case
study 5 (first problem in Ref. [36], further described in Appendix
Case Study 5). Both algorithms are run with the same robot speci-
fications and environment settings as in Ref. [36]. It should be noted
that there are two main differences between the generic mission
objectives of the Bayes-Swarm algorithm and the glowworm algo-
rithm: (1) Bayes-Swarm is designed to find the source with
maximum strength signal in the presence of other weaker (say
decoy) sources, while the glowworm algorithm is designed to find
all local and global sources (both mission objectives can translate
to important practical applications in the emergency response and
defense domains). (2) The glowworm algorithm assumes the
robots to be initially distributed in the search arena, while
Bayes-Swarm makes no such assumption. With regard to the first
difference, we compare Bayes-Swarm’s completion time to find
the global target source (with maximum signal strength) with the
time that the glowworm algorithm takes to find the first source
(i.e., any source, local or global)—thus Bayes-swarm’s job is
made to be at least as (or likely more) difficult. The second differ-
ence, with respect to starting points, is readily handled in our algo-
rithm, since Bayes-Swarm is agnostic to the initial location of the
robots.

We assume 50-robot teams and randomly generate the initial
location of the robots in the arena, to be used by both methods:
−3≤ x1≤−1.2 and −3≤ x2≤ 3; based on the settings used in the
reported glowworm algorithm, the robot velocity is set at V=
1 m/s.2 Since the glowworm algorithm employs a stochastic
search approach, it is run ten times on this problem. It is observed
that the robot team under Bayes-Swarm finds the source with
maximum strength in 1.86 time units. In contrast, the robot
team under the glowworm algorithm takes 3.04± 0.4 time units
(mean± std dev. over ten runs) to find the first (any) source, and
4.44± 0.55 time units to find the source with maximum signal
strength. These results show that not only Bayes-Swarm is 58%
faster than the glowworm algorithm in finding the global target
source but also finds the global target source is less time than
that taken by the glowworm method to find any source.
It is important to note that the performance of both Bayes-Swarm

and glowworm algorithms is affected by their respective prescribed
parameters. In the case of the glowworm implementation, we used
the same parameter settings as those recommended by Kaipa and
Ghose [37] (i.e., the paper from which we adopt the implementation
of this algorithm). In the case of Bayes-Swarm, it was readily
evident from earlier parametric analysis (Fig. 6) that, for complex
multimodal signal environments, a value of α< 0.4 works well.
Hence, we explored how Bayes-Swarm would compare to the glow-
worm algorithm when implemented with different values of α< 0.4.
The results show that Bayes-Swarm found the target with maximum
strength in 2.43, 3.32, and 2.40 time units for α set at 0.05, 0.1, and
0.2, respectively; these mission completion times are still better than
that resulting from the glowworm implementation.

5.5 Discussion of Bayes-Swarm Performance. The various
empirical analyzes performed here show that the proposed
Bayes-Swarm algorithm is scalable with respect to the number of
robots and is able to localize targets involving complex multimodal
signal environments. The algorithm also requires minimal heuris-
tics, being dependent on only a single tunable parameter α that reg-
ulates the balance between exploration and exploitation. While, in
the numerical experiments presented in this paper, a value of α <
0.4 was found to yield promising performance, in future it would
be important to pursue approaches to automatically adapt α to the
environment during the mission. Another important advantage of
the Bayes-Swarm algorithm over model-free algorithms is its pro-
visioning of a belief model of the signal environment during the
mission. This makes the emergence of the robotic swarm system,
from agent level micro-planning to team level macro search
dynamics, relatively interpretable (as opposed to a blackbox
phenomena).
The current form of the Bayes-Swarm method needs to overcome

a few crucial limitations in the future. The need for downsampling is
one of them. Since updating the GP-based belief model presents a
cubic time complexity with respect to data-set size, we are required
to downsample the collective data set of the swarm (observations
made by agents). Without such downsampling, the cost of updating
the belief model and thus of decentralized waypoint planning
onboard simple robotic agents (with frugal computing capacity)
will become burdensome. Currently, we use a simple downsam-
pling approach based on sample rate compression. While this
approach is simple to implement, it is far from optimal, especially
for large swarm systems with 100s of robots. In such scenarios,
choosing the most informative samples (to update the belief
model) out of the entire set of observations remains a critical ques-
tion, which will need to be addressed in future research on
Bayes-Swarm. Another limitation of the current approach is the
assumption of full observability, or a fully connected wireless
network, where each swarm-robotic agent can communicate with
all team members. In practice, it is more common to experience

Table 3 Performance of the Bayes-Swarm, baseline, and
competing algorithms on five test case studies with five
robots; the exploitation coefficient of the Bayes-Swarm
algorithm is set at 0.4 for all case studies, except case study 5,
which is set at 0.99

Case study Algorithm Total timea (s) Success rate

1 Bayes-Swarm 246.1 1/1
Random-walk 20,394 1/5
Exhaustive search 22,174 1/1

2 Bayes-Swarm 42.5 1/1
Random-walk 227.6 5/5
Exhaustive search 225.3 1/1

3 Bayes-Swarm 260.1 1/1
Random-walk – 0/5
Exhaustive search 22,174 1/1

4 Bayes-Swarm 373.2 1/1
Random-walk – 0/5
Exhaustive search 9163b 1/1

5 Bayes-Swarm 31.9 1/1
Random-walk – 0/5
Exhaustive search 992b 1/1

aAs all random-walk runs are not able to find the source, we only report the
total time of the best solution obtained using the random-walk.
bFor this case, we divide the search space into four equal quarters and each
robot does an exhaustive search in each portion (two in the global portion).

2These settings are purely computational and are used here to preserve the sanctity
of the glowworm implementation and allow fair comparison.
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partial observance across the team due to communication range
restrictions or communication intermittency issues. The allowance
of asynchronous decision-making (currently offered by Bayes-
Swarm) does help to some extent in mitigating the impact of such
communication network limitations. However, in order to minimize
potential conflict between agents’ decisions under partial obser-
vance, further advancements are needed in the formulations of the
acquisition function and constraints guiding the waypoint planning
of swarm agents.

6 Conclusion
In this paper, we proposed an asynchronous and decentralized

algorithm to guide the path planning of a team or swarm of
robots that is searching for the source of a spatially distributed
signal in 2D arenas. This algorithm is founded on an extension of
the batch Bayesian optimization method, with advancements
made for application to embodied swarm systems. A new acquisi-
tion function is designed to be able to uniquely incorporate the fol-
lowing: (1) modeling knowledge gain over trajectories, as opposed
to at points; (2) implicitly mitigating overlapping trajectories among
robots to maximize unique knowledge gain; and (3) incentivising
robots to reach (closest to) the expectation of the source, while
accounting for constraints on the robot’s motion and cost incurred
by it in reaching a candidate waypoint. A heuristic (parameter, α)
is currently used to balance the source seeking and knowledge
gain components of the acquisition function, and thus further para-
metric analysis is performed to understand its impact. It is found
that suitable values of this parameter depend both on the size of
the swarm and the complexity of the signal’s spatial distribution.
An important direction of future research will be to build on this
understanding to formulate a situation-adaptive variation (instead
of user prescription) of the weighting coefficient.
To evaluate and compare the performance of the proposed algo-

rithm, Bayes-Swarm, exhaustive search and random-walk baselines
are considered. These algorithms are tested on five distinct case
studies, with varying arena size and complexity (non-convexity)
of the spatial distribution of the signal. Performance is analyzed
in terms of completion time and mapping error. The Bayes-Swarm
approach easily outperforms the exhaustive search and random-
walk approaches by achieving up to 90 times better values of com-
pletion time. In addition, we compared our algorithm with the
state-of-the-art SI-based glowworm algorithm, over a benchmark
(multi-source) problem, with the outcomes clearly demonstrating
the search efficiency benefits of Bayes-Swarm.
Scalability of the Bayes-Swarm algorithm is also analyzed, with

significant performance gain (in terms of superlinear reduction in
completion time) observed as the swarm size is changed from 2
to 20, and then mostly saturating owing to the bounds on the size
of the arena. Increased swarm size, while beneficial to the
mission, also increases the rate at which signal data are collected;
this then increases the online computational cost of updating the
GP model of the signal environment by every robot during the
mission. Thus, future work will look at advanced downsampling-
based update approaches (e.g., using active learning techniques)
or direct sharing of model updates across robots (instead of
sharing of data), especially for applications where 100s–1000s of
robots are needed, or where longer mission time periods are
needed. This, along with physical demonstration and the consider-
ation of partial observability due to communication constraints, will
allow us to more comprehensively explore the scalability of the
Bayes-Swarm algorithm in the future.
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Nomenclature
r = robot index, a value between 0 and Nr

T = decision-horizon time of robots
V = nominal velocity of robots
ls = length of path s

Nmax = downsample threshold, which defines the maximum
allowed samples for fitting the GP model by each robot

Nr = number of robots (swarm size)
D1:kr = observations history of robot-r, including

self-observations and shared by its peers, from beginning
of the mission until finishing its ith waypoint

xk+1r = next waypoint of robot-r at the decision-time kr
yir] = source signal measurements made by robot-r while it is

moving from waypoint-(i− 1) to waypoint-i
Di

r = a set of observations of an environment that made by
robot-r after finishing its ith waypoint; i.e., Di

r = [Xi
r , y

i
r]

X̂kr
−rp = current local peer-p’s next waypoint of robot-r at the

decision-time kr
Xi

r = location of the observations made by robot-r while it is
moving from waypoint-(i− 1) to waypoint-i

X̂
kr
−r = current local peers’ next waypoint of robot-r at the

decision-time kr; i.e., X̂
kr
−r =

⋃
p=1;p≠r X̂

kr
−rp

hr(.) = source seeking term of robot-r in Bayes-Swarm
gr(.) = knowledge-gain term of robot-r in Bayes-Swarm
GPr = GP model trained and used by robot-r

α = exploitation weight, where α= 1 would be purely
exploitative

Δθ = initial feasible direction

Appendix A: Definition of Case Studies
Case Study 1: Large Arena, Convex Signal Distribution

f = exp −
‖x − c1‖2

130

( )
(A1)

Here, x= (x1, x2), where 0≤ xi≤ 24, and c1= (5, 23). The initial fea-
sible direction, Δθ, is set at 90.

Case Study 2: Small Arena, Non-Convex Signal Distribution

f = exp −
‖x − c1‖2

3

( )
+
1
2
exp ( − 2‖x − c2‖2) (A2)

Here, x= (x1, x2), where 0≤ xi≤ 2.4, c1= (1.9, 2.3), and c2= (1.5,
0.5). The initial feasible direction, Δθ, is set at 90.

Case Study 3: Large Arena, Non-Convex Signal
Distribution

f = exp −
‖x − c1‖2

120

( )
+
1
2
exp −

‖x − c2‖2
30

( )
(A3)

Here, x= (x1, x2), where 0≤ xi≤ 24, c1= (10, 23), and c2= (15, 5).
The initial feasible direction, Δθ, is set at 90.

Case Study 4: Large Arena, Highly Multi-Modal Signal
Distribution

f = exp −
‖x − c1‖2

130

( )
+
2
5

∑7
i=2

exp −
‖x − ci‖2

40

( )
(A4)

Here, x= (x1, x2), where −24≤ xi≤ 24. Moreover, c1= (21, 19),
c2 = (21, −19), c3= (0, −15), c4= (0, 15), c5= (−19, 10),
c6 = (21, 19), and c7= (−15, −15). The initial feasible direction,
Δθ, is set at 360.
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Case Study 5: Multi-Modal Source. We use the first example
given in Ref. [36], which is a multi-modal function and defined
as follows:

f (x1, x2) = 3(1 − x1)
2 exp(−(x21) − (x2 + 1)2) (A5)

−10(x1/5 − x31 − x52) exp(−x
2
1 − x22) (A6)

−(1/3) exp(−(x1 + 1)2 − x22) (A7)

Here, −3≤ xi≤ 3. A set of 50 robots are randomly deployed in a
two-dimensional region such that −3≤ x1≤−1.2 and −3≤ x2≤ 3.
The function consists of a set of three peaks at locations
(−0.0093, 1.5814), (1.2857, −0.0048), and (−0.46, −0.6292).
The source with maximum strength is located at (−0.0093, 1.5814).

Appendix B: Bayes-Swarm and Glowworm Algorithm
Settings
Table 4 summarizes all settings that have been used for

Bayes-Swarm for all experiments and case studies. Table 5 lists
the settings that have been used for the glowworm algorithm in
Experiment 4.
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