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ABSTRACT
Aperiodic metamaterials represent a class of structural sys-

tems that are composed of different building blocks (cells), in-
stead of a self-repeating chain of the same unit cells. Opti-
mizing aperiodic cellular structural systems thus presents high-
dimensional design problems, that become intractable to solve
using purely high-fidelity structural analysis coupled with opti-
mization. Specialized analytical modeling along with metamodel
based optimization can provide a more tractable alternative to
designing such aperiodic metamaterials. To explore this con-
cept, this paper presents an initial design automation framework
applied to a case study representative of a simple 1D metamate-
rial system. The case under consideration is a drill string, where
vibration suppression is of utmost importance. The drill string
comprises a set of nonuniform rings attached to the outer sur-
face of a longitudinal rod. As such, the resultant system can
now be perceived as an aperiodic 1D metamaterial with each
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ring/gap representing a cell. Despite being a 1D system, the
simultaneous consideration of multiple degrees of freedom (as-
sociated with torsional, axial, and lateral motions) poses signif-
icant computational challenges. To deal with these challenges,
a transfer matrix method (TMM) is employed to analytically de-
termine the frequency response of the drill string. However, due
to the minute scale cost of the TMM method, the optimization re-
mains computationally burdensome. This latter challenge is ad-
dressed by training a suite of neural networks on a set of TMM
samples, with each network providing the response w.r.t. a spe-
cific frequency. Optimization is then performed to minimize mass
subject to constraints on the gap between consecutive resonance
peaks in one case, and minimizing this gap in the second case.
Crucial improvements are accomplished over the initial base-
lines in both cases. Further novel contributions occur through
the development of an inverse modeling approach that can learn
optimal inverse designs with minimum mass and a desirable non-
resonant frequency range, which partially mimics band gap be-
havior in perfectly periodic dispersive structures. To this end, we
introduce the use of an emerging modeling formalism called in-
vertible neural nets. Our study indicates that the inverse model is
able to generate constraint satisfying designs with slightly higher
mass.
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1 Introduction
1.1 Aperiodic Metamaterial Optimization

Metamaterials are compound structures that are made from
small substructures referred to as “unit cells” [1, 2]. Such com-
position enables them to have customizable physical properties
which are otherwise not feasible [1, 3]. As such, they have be-
come increasingly popular and, despite manufacturing difficul-
ties [4, 5, 6], are being widely used in different applications rang-
ing from acoustics [7, 8], and photonics [9, 10], to sensing and
other end uses [11, 12, 13].

Owing to the periodic nature of traditional metamaterial sys-
tems, the common approach utilized in their design predomi-
nantly relies on using an individual cell to predict the perfor-
mance of the overall structure [14, 15, 16]. Contrary to periodic
metamaterials, aperiodic designs utilize a more extensive design
space opening up more possibilities to achieve a targetted behav-
ior. For instance, Hussein et al. [17] compared the wave dis-
persion characteristics of a layered metamaterial. By increasing
the number of design variables, the performance of the system
increased, but the optimization became evidently more challeng-
ing. These challenges are expected to further increase by hav-
ing aperiodic structures such as those presented in [18]. In all
of these efforts, the optimization was limited by the computa-
tional cost. There are other approaches to tackle this problem.
For instance, Bostanabad et al. [19] used Gaussian Process for
big data in a process called Globally Approximate Gaussian Pro-
cess and used it for metamaterial design. An issue with using
Gaussian Process models is the difficulty of inverting the model.
While it is possible to use an inverse design based on the GP
based surrogate model, it is not necessarily a computationally
efficient process, and more importantly a separate optimization
is required every time a different end property is desired by the
user. Another recent approach uses a Bayesian Network Clas-
sifier [20, 21], which significantly reduces computational effort
and provisions model error measures. However, it is not directly
amenable to efficient inverse design or on-demand retrieval of
metamaterial design given desired properties.

Our idea is to use an invertible artificial neural network
(ANN) that can generate the inverse design without significant
additional computational cost beyond sampling a set of forward
optimizations. More specifically, we show that by training a for-
ward ANN based metamodel with certain constraints on its ar-
chitecture, one can implicitly learn the inverse mapping. To our
knowledge, this is the first formal exploration of how to use this
nascent modeling paradigm, i.e., provably invertible neural nets,
to enable on-demand inverse design. In principle, the method is
extendable (in future) to exploit active sampling over optimiza-
tions, to offer unprecedented efficiency in inverse metamaterial
design or on-demand retrieval of metamaterial topologies. In this
paper, we specifically use a set of surrogate models to estimate
the attenuation response, i.e., substitute the more expensive for-
ward model, which are then used to perform the sample forward

optimizations.
Surrogate based optimization is a class of optimization

methods that use surrogate models to decrease computation ex-
pense for evaluating the objective function or for constraint vio-
lation assessment [22]. Since, physics based models for dynamic
analysis of structures tend to be computationally expensive, us-
ing surrogate models to represent them is an attractive choice
from a computational time savings perspective [23]. In order to
achieve better accuracy with a smaller number of samples, we
used one model for each frequency, which leads to a massive
number of models. Using a single model for all outputs could in
principle provide more parsimonious representations due to the
dependency between outputs [24]. However, our current choice
of a surrogate per frequency is driven by the observation that, any
advantage offered by capturing the dependency between outputs
is undermined by the massive output to input ratio (480 outputs
for only 30 inputs) that such a model must handle. In this study,
we successfully train a suite of neural networks that can be used
as surrogate models for the optimization of aperiodic structures.
In order to test our models, we use a passive vibration problem,
which is designed inspired by [25]. In this problem, we use ma-
terial inserts on a drilling pipe to generate a passive filter for vi-
bration. We use our method in this example by considering the
inserts as different unit cells and optimize the drilling pipe to ex-
hibit the required non-resonant frequency range.

The overall objectives of this paper can be summarized as:

1. Develop an efficient forward optimization framework that
integrates transfer matrix models and surrogate models to
efficiently design 1D metamaterials that minimize mass sub-
ject to certain frequency response constraints.

2. Investigate a novel invertible neural network approach to
learn the forward optimization outcomes in a manner that
allows reliable inverse computations for on demand design
(given desired properties).

3. Demonstrate the effectiveness of the forward and inverse de-
sign methods by applying it to design 1D drill strings with
multiple modes of vibration.

1.2 1D Metamaterial Example: Drill Strings
Drill strings are usually very long structures composed of

thin-walled drill pipes[26] used in a wide range of application
such as oil exploration and sample collection by planetary rovers.
Their inherent slender geometry makes them susceptible to vi-
brations. There are three major types of vibrations that a drill
string might face, Longitudinal vibration or Bit-Bounce vibra-
tion, which occurs in the axial direction, the Lateral or Whirl
vibrations, and Torsional or Stick-Slip vibrations. [25]. These
vibrations can be detrimental to the drill string as well as asso-
ciated parts including the drill bit, borehole assembly, and well
wall [25, 27, 28], which could thus result in major downtimes in
drilling [26]. In a study by Alsaffar et al. [25], additional mass is
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added to the drill string to change its dynamic behavior. In this
approach, optimally placed periodic inserts in the form of annu-
lar rings were attached to the periphery of the drill string. The
addition of the inserts, when optimally placed, mitigates high
amplitude vibrations, thereby minimizing the possibility of ex-
cessive damage to the drill string during operation. Drill strings
serve as a suitable example for analyzing the effectiveness of the
proposed forward and inverse design methods, since while repre-
senting a tractable 1D metamaterial system, it offers substantial
complexity in the form of the multiple coupled modes of vibra-
tion – which will help derive general insights from the results
obtained from our design case studies.

The remainder of this paper is structured as follows. In sec-
tion 2, we explain the overall design frameworks, including de-
scription of the Transfer Matrix Method for computing the fre-
quency response of the system. In section 3 we present the drill
string problem formulation. Section 4 explains the inverse de-
sign problem and Section 5 is dedicated to the discussion of the
design optimization results. In section 6, we provide concluding
remarks.

2 Methodology

2.1 Forward & Inverse Design Framework

Figure 1 illustrates our overall design automation frame-
work. The goal of this framework is to enable surrogate-based
optimization and inverse design to retrieve aperiodic metamate-
rial configurations given desired passive vibration suppression
properties, i.e., frequency response properties. A Drill string is
chosen as a case study to analyze the performance of this frame-
work and the benefits of the underlying new inversion concepts.
First, a suite of ANNs are trained on samples generated by a
physics based forward model, in this case a Transfer matrix
method. Then optimization is performed using a Particle Swarm
or PSO algorithm [29] to find the design with the maximum
non-resonant frequency range. An inverse design mechanism is
then developed by performing several optimizations to minimize
the mass of the design for several samples of the non-resonant
frequency range, with mass minimization acting as a regularizer
that seeks to facilitate an inverse that is at least locally unique.
An Invertible ANN is then trained on the optimized samples
to directly model “design → desired-vibration-properties”,
and implicitly capture the inverse mapping (due to its inherent
invertibility). For performance evaluation, we compare the
inverse designs (on unseen test samples, i.e., unseen desired
property specifications) given by both the invertible ANN model
and by solving a constrained forward optimization (where the
latter is a conventional approach to inverse design).

2.2 Transfer Matrix Method
The Transfer Matrix Method (TMM) is an analytical ap-

proach with the ability to give an exact solution to the structural
dynamics problem. At its core, the TMM tracks the transmission
of different forces (or moments as applicable) and deformations
(or rotations as applicable) from one segment of a structural sys-
tem to the adjacent one. As such, to capture the performance of a
tapered rod or one of varying cross-section, it must be discretized
to different cylindrical sub-bodies. This discretization may lead
to a loss of model fidelity as a result of the insufficient number
of discrete segments. Another drawback of the TMM method
are often some numerical errors associated with calculating the
analytical response depending on matrix conditions. Solving the
TMM method requires high numerical precision. In this paper, a
precision of 100 digits is used in order to avoid errors, which in
turn significantly increased the computation time.

The “Transmission Ratio” refers to the amount of vibration
transmitted to one end of a drill pipe when subjected to excitation
at the opposing end. This vibration can be modeled as displace-
ment or force based on the boundary conditions. While typically
the transmission ratio is below one, during resonance, it increases
to a very high value, which can cause significant damage to the
structure. In the current study, we obtain the the transmission
ratio using the TMM method and optimize the design using sur-
rogate models. TMM equations for Euler-Bernoulli beam with
free-free boundary condition are defined based on Equations 1, 2
for Axial Vibrations and equations 3, 4 for Torsional vibrations:

Ti, j =

 cos(Ωi, j)
sin(Ωi, j)

KiΩi, j
−sin(Ωi, j)KiΩi, j cos(Ωi, j)

 (1)

Ci =
Ei

ρi
, Ωi, j =

2πω jwi

Ci
, Ki =

EAi

wi
(2)

Ti, j =

 cos(Ωi, j)
sin(Ωi, j)

KiΩi, j
−sin(Ωi, j)KiΩi, j cos(Ωi, j)

 (3)

Ci =
Gi

ρi
,Ωi, j =

2πω jwi

Ci
, Ki =

GiJi

wi
, (4)

While both equation 1 and 3 show a decoupled relation to
the other DoFs, for Lateral Vibrations, we use a set of coupled
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equations [30]. Here we only consider the lateral displacements,
and because of the symmetry between two lateral directions, the
transmission ratio will be the same for both directions. There-
fore, although we need to solve the coupled 8 by 8 problem, we
only plot transmission ratio in one direction for lateral vibrations.
The equations below explain the TMM matrix for this problem:

H =


1 1 1 1 1 1 1 1
−iα iα −iβ iβ α −α β −β

−cα2 −cα2 −cβ 2 −cβ 2 cα2 cα2 cβ 2 cβ 2

icα3 icα3 −icβ 3 icβ 3 −cα3 cα3 −cβ 3 cβ 3

γ1 γ2 γ3 γ4 γ1 γ2 γ3 γ4
1iγ1α −1iγ2α 1iγ3β −1iγ4β −γ5α γ6α −γ7β γ8β

cγ1α2 cγ2α2 cγ3β 2 cγ4β 2 −cγ5α2 −cγ6α2 −cγ7β 2 −cγ8β 2

−icγ1α3 icγ2α3 icγ3β 3 icγ4β 3 −cγ5α3 cγ6α3 −cγ7β 3 cγ8β 3


(5)

D =


eik1d 0 0 0

0 eik2d 0 0
0 0 e−ik1d

0 0 0 e−ik2d

 (6)

α =

(
a+2∗b

2
+

√
4∗b

4
+2∗b

2 ∗a
)0.25

β =

(
a+2∗b

2−
√

4∗b
4
+2∗b

2 ∗a)
)0.25

(7)

a =

√
EI
(pA)

(8) C =

√
E
p

(9)

ω =
2πwd

C
(10) b =

2iwω

C2 (11)

b =
b
2i

(12)

In the equations above, j is an indicator of each frequency,
and i is an indicator of the cross-sections. E,A,w denote the elas-
tic (Young’s) modulus, cross-sectional area, and width, respec-
tively, and ω is the angular frequency. C represents the wave,
and c is the effective elongation of the force. Ti, j indicates the
transfer matrix in specific cross-section for a specific frequency,
while T̄j indicates total transfer matrix of a particular frequency.

2.3 Surrogate Modeling
Surrogate Modelling or metamodeling techniques are useful

in optimization when the objective or constraint function(s) are
computationally expensive. In this paper,in the 1D metamaterial
design process, we consider constraints such as the frequency
range between two successive peaks in transfer ratio,which en-
sures a fixed non-resonant frequency range, while the objective
function -in this case mass of the inserts, is minimized. The
Transfer Matrix Method is used to compute the frequency range
. While computing the vibration characteristics using the TMM
method is significantly more efficient than say a finite element
analysis approach, its computational expense (∼ 150 seconds on
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an Intel Core i7-9750H with 32GB system memory, to calcu-
late axial, lateral and torsional vibration response) becomes sub-
stantial in the context of our needs – where the model has to
be used to generate multiple model-based sample optimizations.
Hence, we leverage a surrogate modeling approach to substitute
the transfer matrix method. Here, shallow feed-forward neural
networks are used for this purpose.

2.4 Optimization
Optimizations are performed with two different objective

functions to suit the needs of two different end goals from a vi-
bration mitigation standpoint. The first objective function, spec-
ified in section 3.2, is used to design an aperiodic metamaterial
with very wide non-resonant frequency ranges. The results of
this optimization are compared with specified baseline designs.
Another optimization is done to generate samples for the in-
vertible ANN, which is discussed in section 4. Since, invert-
ible ANNs require a bijective function spaces (i.e., one-to-one
mapping), constrained optimization is used to facilitate locally
unique forward solutions. The PSO algorithm by Chowdhury et
al. [29] is used for optimization. Default PSO settings were used,
which can be found in [29].

2.5 Inverse Mapping with Invertible Neural Networks
Many engineering and materials design problems can be ex-

pressed as an inverse problem, where a well-posed forward map-
ping f : x→ y exists, and we want to find the values of variables
x, which corresponds to the desired value of a property y. The
mapping f : x→ y is well defined and easy to compute, but the in-
verse generally has to be found by solving an optimization prob-
lem. However, solving an optimization problem for every de-
sign query is inefficient and time-consuming, and does not lend
well to on-demand design retrieval. Such on-demand design re-
trieval is useful in various contexts, such as i) conceptual design,
ii) feasibility analysis, iii) fast retrieval of intermediate parame-
ters or test of existence of feasible intermediate parameters in
multi-scale or hierarchical design problems, and iv) creation of
seeding databases, i.e., databases to effectively seed more com-
plex metamaterial optimizations or design of experiments.

An invertible forward model ( f : x→ y) will allow retrieval
of the inverse ( finv : y→ x), which is the role being played by
invertible ANNs in this paper. Invertible networks or INNs [31]
are a class of neural networks that have a unique architecture,
which ensures their invertibility. While traditional neural net-
works, when applied to inverse problems, try to directly approx-
imate the complex inverse problem [31], INNs when trained on
the well-understood forward problem, will capture the inverse
model automatically. However, INNs can work only when the
model is bijective. In this paper, we first train a surrogate model
(from the TMM response) to decrease the computational cost of
optimization, and later we use it to train our invertible neural

network. It is also possible to use the invertible neural network
as a surrogate model, but as mentioned above, additional con-
straints are necessary to be able to use INNs in this manner, due
to the non-unique nature of the inverse. A handful of notable
INN architectures have been reported in recent years [32], with
preliminary applications to image reconstruction, parameter es-
timation, generative flow modeling. We implemented the Invert-
ible Network architecture proposed in [31]; we chose this im-
plementation as it offered an efficiently computable jacobian and
ensure invetibility by preserving the non-singular nature of Jaco-
bian. This implementation of INNs depends on the third set of
variables called latent variables. They represent the information
lost in the forward mapping x→ y. The INN uses the relation-
ship between these latent variables and the actual parameters in
order to mitigate representation loss. Another key feature of this
INN implementation is that the forward and the inverse models
are trained jointly. Section 4 and Table 2 contains further details
of our current implementation.

3 Problem Definition
The problem we used here to illustrate our method is based

on the passive vibration filtering of drilling pipes.

3.1 Design Using Aperiodic Inserts
In this study, for passive vibration suppression, additional

material is added to the drill string in the form of annular rings
- the position and size of which are determined by optimization.
Adding mass to the drill string affects the impedance response of
the drill string, limiting the undesirable high transmission ratios
to the stop band of the response. The number of inserts added is
fixed at 10 for this study. This approach is similar to the one fol-
lowed by Shaffer et al. [25]. The key difference is our usage of
an aperiodic structure in contrast to the classical periodic struc-
ture used earlier. This leads to greater flexibility in the design of
the drill string, while at the same time increasing the complexity
of design space that must be searched (both in the forward and
inverse problems). The increased flexibility not only offers in-
creased performance, but also opportunities for reconfiguration
during the lifetime of the system, due to the lack of dependence
on a self-repeating (typical) metamaterial design. The designed
pipe can be used for different vibration frequencies by merely
adding or changing the position of the inserts. However, the ad-
ditional inserts may introduce regions of higher stress concentra-
tion along the drill pipe.

As a drill string is a very long structure with varying lengths
(depending on the number of drill pipes connected), the design is
performed on a more standardized structure – a single drill pipe.
Additionally, it is reasonable to expect the total vibration in the
string will decrease if the vibration in every drill pipe decreases.
The transmission ratios of the drill pipe are calculated by using

5 Copyright c© 2020 by ASME



TMM and constrained with a free-free boundary condition. Fig-
ure 2 shows the design structure with the inserts (note that the
radial dimension is enhanced to highlight the aperiodic nature of
our designs). As seen from the figure, the aperiodic design is
parameterized in terms of Di, Wring,i, WNo−ring,i, which are re-
spectively the outer diameter of the i-th insert, the width of the
i-th insert, and the width of the gap between the i-th and i+1-th
inserts. The properties of the inserts and drill pipe are listed in
table 1.

FIGURE 2: Structure of the drill pipe with inserts

3.2 Optimization formulation
The optimization objective is to maximize the non-resonant

frequency range and is formulated as:

max:
x

ωl−ωk,3 ∀ω ∈ (ωk,ωl)
ωl

∑
ωk

δ (x,ωi) = 0

δ (x,ωi) =

{
1, if Ψ(x,ωi)≥Ψ(x,ωi±1)

0, otherwise

s.t: ωl−ωk ≥ ωc,

ωc =

{
200 Hz, for Axial and Torsional Vibrations
1000 Hz, For Lateral Vibrations

(13)

Dmin ≤ Di ≤ Dmax, Di ∈ R
Wring,min ≤Wring,i ≤Wring,max, Wring,i ∈ R
WNo−ring,min ≤WNo−ring ≤WNo−ring,max, WNo−ring,i ∈ R

(14)

TABLE 1: Drill Pipe properties

Pipe’s Parameters Value
L 9 m

ρ 1800 kg/m3

E 193 GPa

G 77.2 GPa

Din 15 cm

Dout 16 m

Insert’s Parameters Value
ρ 1800 kg/m3

E 193 GPa

G 77.2 GPa

d [ 16,32 ] cm

Wring [ 7.5,37.5 ] cm

WNo−ring [ 0.15, 2.25 ] cm

Frequency Ranges Value
Axial [ 0.1, 800 ] Hz

Torsional [ 0.1, 800 ] Hz

Lateral [ 0.1, 10000 ] Hz

The vector of design variables x = {Di,Wring,i,WNo−ring,i,∀i =
1,2, . . . ,n} contains the outer diameter of the insert, thickness of
the insert, and the distance between successive inserts. For our
case studies, we consider a fixed number of n = 10 inserts.

Initial numerical (optimization) experiments showed that the
problem is highly multi-modal, as a result of which a global opti-
mizer such as PSO was deemed suitable to perform the optimiza-
tions.

Non-Resonant Frequency Range In this study, the
axial and torsional vibrations were analyzed over a frequency
range of 0.1-800 Hz, while the lateral vibrations were analyzed
over a frequency range of 0.1-10000 Hz. In order to find the
transfer ratio across the domain ,the entire frequency range is dis-
cretized into 80 frequency points and the transmission ratios are
calculated at those frequency points. This discretization is done
in order to reduce the computational cost. The non-resonant fre-
quency range is found by analyzing the transmission ratio values
over the 80 points and identifying the resonant peaks. The largest

6 Copyright c© 2020 by ASME



range between two consecutive resonant highs was considered
for optimization purposes.

Surrogate Modelling For each of the 80 discretized fre-
quencies, a surrogate model is trained that can represent the at-
tenuation of the 6 DoF’s of the system. Therefore a total of 80
multi-input-6-output ANN models (with 100 hidden neurons in a
single layer) were trained, which showed more promising results
compared to training a multi-input-6×80-output model. In or-
der to train these models, 24,000 samples (of 30 design variables
D1,...,10,Wring,1,...,10,WNo−ring,1,...,10 were generated. Table 2 lists
the model structure and settings used here.

4 Inverse Design
For a structural dynamics problem such as the one dealt with

in this paper, the forward problem consists of finding the fre-
quency response for a given structure, which can be represented
as:

d2

dX2

[
EI

d2u
dX2

]
=−M

d2u
dt2 + p(X) (15)

Where E is the elastic modulus, I is the moment of inertia of
the structure,p(x) is the external load on the system and M is the
mass. The frequency response is obtained by solving the above
PDE, in this case, using the TMM method. In the context of our
vibration mitigation goals, we are interested in determining the
range of frequencies between which no resonance occurs, and
thus the “PDE solution of interest” is represented in terms of a
counter (h(x,ω1,ω2)) that counts the number of peaks in the fre-
quency response between ω1 and ω2. The inverse problem can
thus be formulated as the following PDE-constrained optimiza-
tion problem, as shown below.

min
x

m(x) = ρ×
10

∑
i=1

π

4
(x2

di
−D2

i )xwi

s.t. h(x,ω1,ω2) =
ω2

∑
ω1

δ (x,ωi) = 0,where

(16)

δ (x,ωi) =

{
1, if Ψ(x,ωi)≥Ψ(x,ωi±1)

0, otherwise
(17)

where, Ψ(x,ωi) =
u

p(X)
. In the above equations, ω1 and ω2 are

the frequencies that bound a frequency range where no resonance
occurs (which we call the “non-resonant frequency range”), and

delta is a binary operator signifying if there is a peak in transfer
ratio at a given frequency.

As mentioned earlier, the INN needs a bijective function
mapping in order to ensure the non-singular nature of the Ja-
cobian which then ensures invertibility. However, the cur-
rent problem is not bijective by itself (as is common with in-
verse problems) since there can be more than one metamaterial
(drill pipe) configurations that provides similar non-resonant fre-
quency range. Therefore, to impose uniqueness, samples are
generated by minimizing mass for varying windows of non-
resonance, as shown in the above optimization formulation. The
premise here being that any local minimum in terms of mass en-
sures a unique solution in its neighborhood.

5 Results and Discussion
Table 2 lists the settings of the optimization problem.

TABLE 2: Optimization and Learning Settings

Surrogate ANN Learning Setting Value

Input Size 30

Output Size 6

Hidden Layers 1

Activation Function tanh

Maximum Iterations 200

Optimizer SGDM

PSO Optimization settings Value

Design Variables Size 30

Population 300

Maximum Iterations 50

Inverse ANN Learning Setting Value

Input Size 30

Output Size 2(+28 latent variables)

Hidden Layers 2

Activation Function leaky ReLu

Maximum Iterations 1500

Learning Rate 10−3 to 0.02×10−3

Optimizer ADAM
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5.1 Optimization Results
The pursuit of the optimal design was conducted using a

population of 300 particles and a maximum of 50 iterations in the
PSO algorithm. Figure 3 shows the convergence history of the
first optimization. The convergence history shows that the sys-
tem successfully generated the required non-resonant frequency
range in 3 DoFs, but the total mass remained large, which was
expected for this design.

Figure 4 shows a initial randomly generated structure from
optimization process, a representative baseline design. Figure 5
shows the actual design of the drill pipe and Figs. 6a to 6c and 7a
to 7c show the transfer ratios for different vibration modes for the
baseline design and optimal design, respectively. The substantial
improvement in the axial vibration non-resonant frequency range
is readily evident, majorly attributed to design changes to the
leftmost 3 inserts.
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5.2 Inverse Design
As mentioned earlier, the INN was trained on samples gen-

erated from optimization. For this purpose, 304 samples were
generated with four different frequency band sizes over the to-
tal frequency range. The inputs to the INN are the design vari-
ables and outputs are the limits of the non-resonant frequency
range. The trained model can be used to recover the design of
the drill pipe with inserts, for a given upper and lower bound of
the non-resonant frequency range. The training mean squared er-
ror (MSE) of the INN was found to be 0.09. Testing error over
unseen samples was found to be 0.13 in terms of MSE. Here
we show the performance of the trained INN on a test sample.
Specifically, Fig. 8a shows the design generated by the INN
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0 2 4 6 8 10
Length

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

D
ia

m
e
te

r

FIGURE 5: Optimal Design Geometry

when the limits to the non-resonant frequency range are 6500
and 7000 Hz. Figure 8b shows the result obtained from opti-
mization for the same non-resonant range.

These results indicate that the Inverse Network outputs a de-
sign that has a frequency range wider than the desired range,
while the forward optimization produces a range that is almost
equal to the required bounds. While both solutions satisfy the
non-resonant frequency range constraint, the design obtained
from optimization weighs 249 kg while the design generated
by the weighs INN 257 kg. This discrepancy is not surprising
and could be attributed to either the error in the INN model, or
more likely to the multi-modal nature of the forward optimization
problem. More comprehensive statistical analysis, augmented by
error propagation approaches will allows shedding more light on
this discrepancy and its implication for on-demand design.
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0 200 400 600 800
Frequency

10 -10

10 -5

10 0

w
/F

 (
A

xi
a
l)

286Hz

(a) Axial Vibration

0 200 400 600 800
Frequency

10 -15

10 -10

10 -5

10 0

w
/F

 (
T

or
si

on
al

) 268Hz

(b) Torsional Vibration

0 5000 10000
Frequency

10 -10

10 -5

10 0

w
/F

 (
La

te
ra

l)

1338Hz

(c) Lateral Vibration

FIGURE 7: Optimal Design Frequency Response

9 Copyright c© 2020 by ASME



0 2000 4000 6000 8000 10000
Frequency

10 -10

10 -5

10 0

w
/F

 (
La

te
ra

l)

Desired Frequency Range
Observed Frequency Range

(a) Frequency Response of Inverse Design Generated by INN

0 2000 4000 6000 8000 10000
Frequency

10 -10

10 -5

10 0

w
/F

 (
La

te
ra

l)

Desired Frequency Range
Observed Frequency Range

(b) Frequency Response of Inverse Design Generated by Optimization

0 2 4 6 8 10
Length

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

D
ia

m
e
te

r

INN Design
Optimization Design

(c) Shape of Drill Pipe Obtained from INN

FIGURE 8: Comparison of Inverse Design Results

6 Conclusion
In this paper, an inverse design and surrogate-based op-

timization approach for designing aperiodic metamaterials are
studied. In order to explore the metamodel based forward de-
sign and the novel inverse design approach (based on on invert-
ible neural nets or INNs), a passive vibration suppression prob-
lem for drilling pipes is investigated. First, the Transfer Matrix
Method is used to generate a transmission ratio for Axial, Tor-
sional, and Lateral directions of 1-D unit cells. In our problem,
we insert cylindrical rings on a drilling pipe to decrease its vi-
bration transmission ratio and generate non-resonance frequency
bands. Then multiple ANNs are used as forward surrogate mod-
els to substitute the Transfer Matrix Method. These models were
used for surrogate-based optimization and helped in making sam-
ple generation tractable, where these samples are to be used for
training the invertible neural network. Once trained, the INNs
can provide near instantaneous retrieval of designs, given desired
non-resonant freqneucy response properties, which has tremen-
dous value for conceptual design, database generation and other
applications. Testing performance and validation showed the ef-
fectiveness of the inverse design learning approach. Since, this
was our first foray, i.e., a proof of concept study in exploring the
benefits of invertible neural nets in inverse design of metamate-
rials, we made several simplifying assumptions. This included
considering a 1D system (albeit with multiple coupled, this com-
plex, vibration modes), fixed number of cells, and using opti-
mizations to generate samples apriori to train the invertible neu-
ral nets. Many of these assumptions can be handled in the future,
e.g., by incorporating smarter sampling techniques, which will
help further establish the true potential of such inverse design
methods, in the development of complex metamaterial systems.
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