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Abstract—We introduce a novel machine learning based fusion
model, termed as PI-LSTM (Physics-Infused Long Short-Term
Memory Networks) that integrates first principle Physics-Based
Models and Long Short-Term Memory (LSTM) network. Our
architecture aims at combining equation-based models with data-
driven machine learning models to enable accurate predictions of
complex dynamic systems. In this hybrid architecture, recurrency
aids the temporal memory of the inputs and output of the
partial physics model, in a way that facilitates generalization
with scarce data sets. We illustrate the application of PI-LSTM
on two dynamical systems namely Inverted Pendulum and Tumor
Growth. Empirical results on both test problems stand witness
to the effectiveness of using physics in guiding machine learning
models and the superiority of the outlined hybrid model over
purely data-driven models.

Index Terms—Hybrid Models, Long Short-Term Memory,
Physics-Based Model, Hybrid Modeling Metrics and Standard
Problems.

I. INTRODUCTION

Predicting complex physical system behavior is important

for many science and engineering applications. A multitude

of physical systems applications including design, control,

diagnosis, and prognostics are predicated on the assumption

of model availability. There are mainly two approaches to

modeling: Machine Learning (ML) and Physics-based model-

ing (Model-Based, MB). Both of these approaches have their

limitations in most real world applications (discussed next).

Typical data-driven ML methods create and train black-

box models, which are prone to a number of limitations.

These models fail to imbibe the underlying physical principles

that govern the real-world phenomena. Additionally, data-

driven models require large amounts of labeled data-sets for

achieving higher accuracies, which is often unavailable in

real-world engineering problems. Further, their performance

depends on the quality of available data. When the training sets

DARPA the Physics of Artificial Intelligence (PAI) program funding with
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are small the performance of these black-box models exhibit

poor performance and they fail to generalize well beyond seen

environments/data [1]. Another significant drawback of data-

driven models is their complete disregard of the physical laws

behind the data-sets. ML models turn blind eyes towards the

essential laws of physics and thus lack consistency in results

that could be used reliably to model physical systems. Even if

the performance prediction of ML models is high, they lack

the physical interpretability of the obtained output.
In contrast, Physics-based models (Model Based, MB),

grounded in the core doctrines of science showcase explainable

relationship between input and output variables [2], [3]. In the

history of science and engineering, they have played a vital

role in knowledge discovery in various technological domains.

Although these models have solidified our understanding of

the physical world, they are often difficult to build and heavily

rely on expert knowledge. No model can exactly imitate the

real physical processes they are supposed to encapsulate. In

particular, this happens due to simplifying assumptions made

during the development of these models. For example, many

physics-based models used for simulation of dynamical sys-

tems often lump several physical parameters into one physical

parameter to reduce the model complexity.
To overcome the limitations of both the approaches we

argue, it is vital to develop novel hybrid methods that combine

physics equation based models (if and when available) with

data-driven machine learning models to enable predictive mod-

eling of complex physical systems, especially in the presence

of imperfect models and sparse and noisy data. In this paper,

we introduce a novel machine learning based fusion model,

termed as PI-LSTM (Physics-Infused Long Short-Term Mem-

ory Networks) that integrates first principle Physics-Based

Models and Long Short-Term Memory (LSTM) network. In

particular, the main contributions of this paper are:

1) A novel hybrid model that integrate physics-based mod-

els with the recurrent memory structure of LSTM (Long
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Short-Term Memory) networks to faithfully model dy-

namic systems.

2) It is shown that when it comes to hybrid models all

physics models are not created equal. In other words,

the performance of the hybrid models is dependent on

the quality of physics models available.

3) Several metrics and couple of new problems specifically

suited to hybrid modeling domain have been outlined.

The outlined metrics and problems could potentially

serve as benchmarks for researcher focusing on hybrid

modeling problems.

The hybrid modeling approach has been applied to two

different, yet illustrative problems: the Inverted Pendulum

and the Cancer Cell Growth. Due to the dynamic nature of

these two problems purely data-driven models require higher

number of training samples to make accurate predictions.

We demonstrate that by using physics-based knowledge in

constructing and guiding data-driven models, the resulting

hybrid model can achieve better prediction accuracy, reduced

complexity, as well as scientific interpretability of results with

lower number of training samples.

Paper structure: We start with a related work survey, fol-

lowed by the Hybrid model Description. We continue with the

description of the example problems and comparison metrics.

Performance comparison between hybrid models and data-

driven models is outlined next. We end with a Discussion over

the results and the future scope of this work.

II. LITERATURE SURVEY

Our work draws motivation from the previous work where

physics is integrated with machine learning models in order

to enhance the predictive capabilities of the overall hybrid

model [4]–[8]. In most of these works it is clearly evident

that the physics of the system is pivotal in guiding the data-

driven predictions. Although the works mentioned above focus

on some aspect of hybrid modeling, they fail to exploit the

temporal and spatial dependencies available in many problems

and thus are vacuous or not applicable in the class of problems

outlined in this paper.

Our hybrid model to a certain extent derives inspiration

from the Long Short-Term Memory (LSTM) models [9], [10].

LSTM models clearly showcase the superior ability in captur-

ing the dynamics of a system, thus making them front-runners

during the selection process of a suitable ML architecture for

the data-driven portion of our hybrid model. The memory cells

in an LSTM unit helps to retain information from a certain

instant in past which may at times prove to be significant

in predicting the present and future states of a system [11],

[12]. The unique properties of LSTM networks make them

an ideal candidate for modeling problems with temporal and

spatial dependencies that is pervasive in predictive analysis of

complex physical systems.

III. HYBRID MODEL

In predictive modeling of complex physical systems, given

the inputs XMB , model parameters PMB and the target

variable Yp the physics-based model prescribes (not learn!) a

mapping fMB : [XMB ,PMB] → Yp. The data-driven machine

learning approach, however, is focused on learning a model

fML : [XML] → Y over a training set to produce estimates of

output Ŷ that are close to Y given inputs XML. As discussed

before, both the approaches have inherent drawbacks.

In our hybrid model, we propose to integrate the sensor data

or black box model output Y and output Yp generated by the

physics model as inputs to the LSTM model. Our hybrid model

learns a mapping fhybrid : [XML,Yp] → Y. In the physics

model, the output Yp may be an insufficient representation of

real phenomenon occurring in a dynamical system due to sim-

plified or partial physics assumptions. By including Yp in the

hybrid model we fuse the physics-based equation information

into the data-driven model. Thus, the hybrid model showcases

better predictability and interpretability when compared to the

purely data-driven model.

In LSTM based data-driven model module of our hybrid

model, we integrate the sensor data and the physics model

output in a creative way, by exploiting the recurrent processing

power and memory retention capabilities of LSTM cells in a

novel manner. Rather than just relying on time-series depen-

dency of the datasets, like the conventional method, we set

the number of time steps (or recurrent processings of each

unit cell) equal to the number of features possessed by each

sample data. Hence, we make our model not only limited to

time-series or sequence-based data samples. For example, in

the case of the Inverted Pendulum problem (described in next

section), we have six input features and four outputs of the

physics model. Thus, our hybrid model will have LSTM cells

with ten (six plus four) time (or recurrent) steps each. On

the other hand, purely data-driven (LSTM) model will only

take six inputs directly from the sensor (black-box) and will

have LSTM cells with six-time steps each. This approach

ensures that we unleash the strong processing capabilities of

the recurrent memory cells. Due to repetitive processing across

successive time steps and information transfer from previous

steps and data retention in memory cells, each feature gets

more weight in determining the final output. The complete

hybrid model is depicted in Fig. 1.

The working of each LSTM cell in our hybrid architecture

can be described as follows. If xn is one of the feature inputs at

any time step t, the LSTM model generates hidden activations

at, represented by (3), at each time step, which are further used

for making predictions. The LSTM model defines a transition

relationship for the hidden representation at through an LSTM

cell, which takes the input xn at the current time step and also

the acquired information from previous steps. Thus when our

LSTM network takes one feature as input, it is processed and

the inherited information is passed on to the next step. Each

LSTM cell contains a cell state ct, calculated using (2), which

serves as a memory and helps hidden units at in retaining

information from the past. We generate a new candidate c∼t,

using (1), to initially replace ct as a placeholder. The cell state

ct is generated by combining ct−1, at−1, and the input features

at t.
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Fig. 1. Flow chart for LSTM based model

Algorithm 1 PI-LSTM

Input: Xr(mXn)

Yphy(mXk) = Physics(Xr)
for i = 1 to n do

ImX(n+k) = [Xr,Yphy]
Model= LSTM()
Model.fit(I)
Predict= Model.predict(Test)
ERROR= MSE(Predict,Test label)

end for
ERRORavg = ERROR/n

c∼t = tanh(W c
aa

t−1 +W c
xxn) (1)

ct = f t
⊗

ct−1 + ut
⊗

c∼t (2)

at = ot
⊗

tanh(ct). (3)

Here W c
a ε RHxH and W c

x ε RHxD denote the weight

parameters used to generate candidate cell state. Hereinafter

we omit the bias terms as they can be absorbed into weight

matrices. Then, we generate a forget gate layer f t, an update

gate layer ut, and an output gate layer, as:

f t = σ(W f
a a

t−1 +W f
x xn) (4)

ut = σ(Wu
a a

t−1 +Wu
x xn) (5)

ot = σ(W o
aa

t−1 +W o
xxn) (6)

At any step t, the hidden representation at is an accumu-

lation of information from previously processed features and

hence affects the generation of final output. In the subsequent

time step t+ 1, the next feature Yp of the input sample, which

is physics model output, is fed to the model along with the

information at, from the previous step. Now we calculate the

attributes of this time steps using (7) to (9).

c∼t+1 = tanh(W c
aa

t +W c
xYp) (7)

ct+1 = f t+1
⊗

ct + ut+1
⊗

c∼t+1 (8)

at+1 = ot+1
⊗

tanh(ct+1). (9)

The transition of cell state over time forms a memory flow

that enables the modeling of long-term spatial and temporal

dependencies. All the input features from sensor sample data

and features of a sample from the physics model go through

the aforementioned processing sequence.

IV. PROBLEM DESCRIPTION

In this section, we give a brief description of the example

problems considered in this paper and also introduce the

mathematical descriptions of the physics-based models used

in the example problems.

A. Inverted Pendulum

The inverted-pendulum system (IPS) is one of the most

popular dynamical systems examples of an unstable system

being used in machine learning domain (e.g., reinforcement

learning) or controls. In IPS problem, the angle and angular

velocity of a pendulum are controlled by moving the cart

Fig. 2. The position of the cart and the force applied to it

are bounded.

Fig. 2. Inverted Pendulum Problem

Two types of modified IPS partial physics models are

considered while formulating the problem statement. In both

models, average wind speed is considered, which differs from

the real wind speed. The only difference between these two

models is the coefficient of friction involved.

Fusion of two levels of physics, with our data-driven LSTM

network, yields two types of hybrid models namely Hybrid 1

and Hybrid 2. In a later section of this paper it is shown that

the quality of physics model or its abstraction ability in its

closeness to the real system behavior, will ultimately help in

improving the prediction accuracy of the overall hybrid model.

The hybrid model aims to determine the state of the IPS with

respect to different spatial and temporal coordinates. The state

vector includes X,V, θ, ω, which are the position, the velocity

of the cart, the angle and the angular velocity of the pendulum,

respectively. The state space equations used for both the partial

and the complete physics models are:

⎡
⎢⎢⎣

Ẋ

V̇

θ̇
ω̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

V
F+Mpsin(θ)(lθ̇

2−gcos(θ))
Mc+Mpsin(θ)2

ω
−Fcos(θ)−Mplθ̇

2sin(θ)cos(θ)+(Mp+Mc)gsin(θ)
l(Mc+Mpsin(θ)2)

⎤
⎥⎥⎥⎦

+

[
0

0.001

]
× F (10)

where Mc, MP , l, g are the mass of cart, the mass of the

pole, the length of the pole and the gravitational acceleration,
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respectively. We denote the applied force by F . To make the

model more realistic, this term is modified considering air
drag and friction:

F̃ = F − FD − Ff (11)

FD =
ρAirCDAC(V + Vwindcos(φwind))

2

2
(12)

Ff = μ(Mc +MP )g (13)

where FD and Ff denote the air drag and friction forces

respectively. The two additional forces, change the force F̃
applied to the cart and are considered for both partial and

complete physics models. The partial physics model uses

average values for both the wind and friction ((14)), while in

the detailed model both of these attributes are variable ((15)).

partial physics =
[

Vw(t)
μ(t)

]
=

[
Vw,0

μ0

]
(14)

[
Vw(t)
μ(t)

]
=

[
Vw,0 +

∑4
i=1 Aw,isin(ωw,i + φw,i)

μ0 +
∑4

i=1 Aμ,isin(ωμ,i + φμ,i)

]

(15)

The input to our hybrid model contains initial states, input

force and time along with the four output states of the physics

model, making the total input parameter equal to 10. The

outputs (to be predicted by the hybrid model) are the four

states that the system reaches after applying the input force.

f(

⎡
⎢⎢⎣

X0

V0

θ0
ω0

⎤
⎥⎥⎦ , F, tf ) =

⎡
⎢⎢⎣

Xf

Vf

θf
ωf

⎤
⎥⎥⎦ (16)

Table I lists the parameter values used for different models

of the Inverted Pendulum problem.

TABLE I
INVERTED PENDULUM PROBLEM: COMPLETE (REAL) AND PARTIAL

PHYSICS MODELS

Model Wind Speed Friction
Complete Model Vwind(t) =

4 + 0.4 sin(2.4t) +
0.32 sin(5.4t) +
1.6 sin(0.2t + 0.2) +
0.4 sin(176t− 0.04)

μk = 0.3

Partial Model - I Vwind(t) = 4 μk = 0.3
Partial Model - II Vwind(t) = 4 μk = 0.03

B. Cancer Cell Growth

Cancer cells exhibit uncontrolled growth and no longer

respond to neural signals that control cell growth inside the

body. Cancer cells originate within the tissues and keep on

dividing. In the later stages, these cells metastasize, meaning

they will break through tissues and spread to nearby tissues

and other organs. Our objective is to model the growth of

cancer cells, i.e., to estimate the size of the tumor based on

its initial size and growth rate of cells.

The physics models characterizing tumor growth can

be classified into two classes: (i) closed-form differential

equation-based models [13]–[16] and (ii) discrete models

based on cellular automata [17], [18] and agent-based models

[19]. Discrete models are closer to reality when compared to

mathematical equation-based models, but are computationally

expensive. We used the later to generate training data. As a

partial physics-based model, we use one based on Ordinary

Differential Equations (ODEs). ODEs based partial physics

model can estimate tumor growth, based on differential equa-

tions, but with less accuracy. The hybrid model proposed in

this paper will use this partial physics model to predict tumor

cell growth.

The cellular automata model classifies the cells into three

categories: Stem cells, semi-differentiated cells, and fully

differentiated cells. Their cellular differentiation mechanism is

depicted in Fig. 3. Only the stem cell has the ability to divide

infinitely while the other two types have limited divisibility.

Stem cells can divide symmetrically to produce new stem cells

known as daughter cells, and hence can increase the tumor

size. Also, through asymmetric division, they can produce

differentiated cells, which can only divide to a certain extent.

Semi-differentiated cells can divide up to some extent, while

the fully differentiated ones cannot divide at all. Therefore the

probability to divide for each cell, pd, and the probability of

having symmetric or asymmetric division, pas are considered

as parameters for the model. Differentiated cells die due to

factors such as lack of glucose or attack from immune cells.

Thus, in the cellular automata model, the rate of cell death α
is one of the important parameters. In this model, the overall

running time is also one of the input parameters.

Fig. 3. Cell differentiation [20]

Our physics model traces its roots to a model proposed

by [20]. In this model, a non-linear ODE is used to model

tumor growth and stability criterion for the system. This model

is generalized by considering 12 states, two of the states

being the number of stem and fully-differentiated cells. Semi-

differentiated cells can have 10 divisions before acquiring

fully-differentiated state. The rest of the ten states are charac-

terized by the number of cells corresponding to each of these

10 divisible cellular conditions. These states are governed by

(17) to (21).
X = [Ns, Nd,10, Nd,9, ..., Nd,1, Nd,0]

T
(17)

dNs

dt
= rsNs (18)

dNd,10

dt
= rasNs − αNd,10 − rdNd,10 (19)

dNd,i

dt
= 2rdNd,i+1 − αNd,i − rdNd,i, 1 ≤ i ≤ 9 (20)

dNd,0

dt
= 2rdNd,1 − αNd,0 (21)
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where, X represents the state vector, Ns is the Number of

stem cells, Nd,i is the number of differentiated cells with i
remaining divisions, Nd,0 is the number of fully differentiated

cells, and α is the removal rate for differentiated cells and rd
is the division rate of these cells. Each division generates two

cells. For Stem cell, the rates of symmetric and asymmetric

division are rs and ras respectively.

Despite being an attractive approach, estimating the number

of cells, at different levels of divisibility potential, is very

challenging. Therefore another model is proposed which is

also the physics model used for our hybrid architecture. This

model, instead of calculating each cell type, considers the total

population of cells. Equation (22) explains this new input.

N = Ns +
10∑
i=0

Nd,i (22)

The total input in this model is five, the total cell population

N being one of the inputs while the remaining four inputs

are the parameters pd, pas, α, and the time difference Δt. The

physics-based model used in our hybrid model has one output,

i.e., the total cell population after time Δt. In the hybrid model,

the LSTM network takes a total of six inputs, five being the

same as those of the physics-based model and the remaining

one is the physics model’s output itself.

V. PERFORMANCE METRICS

We outline a set of performance metrics that enables one to

compare the performance of hybrid models and purely data-

driven approaches by assessing the predictive capabilities of

both the models as well as their ability to capture dynamic

characteristics of the system. Next, five different metrics are

described in details.

A. Generalizability

It refers to the ability of a model to perform well on

unseen data sets within its training input domain range. In this

paper, we use MSE (Mean Squared Error) as the evaluation

criteria for generalizability. Mean Square Error measures the

average squared difference between the prediction value and

the original truth value. The MSE can be expressed by (23) :

MSE =

∑n
i=1 (ŷi − yi)

2

n
(23)

where ŷ is the predicted value, y is the ground truth value and

n is sample size.

B. Extrapolability

Extrapolability is the measure of a model’s predictive accu-

racy on a data set outside its training range. Here, also we use

MSE as the metric for evaluation. The difference as compared

to the generalizability metric lies in the fact that generalizabil-

ity focuses on interpolation whereas extrapolability focuses on

extrapolation.

C. Model Complexity

This metric provides an account of the computational com-

plexity of the given model. Based on the required number of

flops for generating the output of architecture, the computation

time is calculated. Memory is calculated by estimating the

storage required for various model attributes like weights. Met-

ric encapsulating computational time and memory requirement

help in the trade-off between performance and computational

speed.

D. Robustness to noisy input

This metric is used to capture the stability of models in the

presence of noisy data. Higher robustness of a model indicates

its capability to perform even when accurate measurements are

not available causing the measured readings to deviate from

their real values. A robust model is useful in modeling real-

world systems where noisy measurements are the norm.

E. Sensitivity to data set size

We use data-sets of different sizes to train both the data-

driven and hybrid models. Observations are made to demon-

strate the change in accuracy with varying data size. For com-

parison purposes, training algorithms hyperparameters such as

learning rate, initial state, etc. are kept constant. The sensitivity

is quantified using generalizability. Here also MSE is used as

a metric for evaluation.

VI. COMPUTATIONAL PERFORMANCE COMPARISON

We demonstrate the ability of the proposed PI-LSTM hybrid

model to perform better in the presence of the abstracted

physics model when compared to purely data-driven approach

(LSTM model). We use data generated from the detailed model

as a black box to train the purely data-driven LSTM and

coarse physics-based models to generate simulated data that

is fed into PI-LSTM hybrid model whose data-driven module

is trained with data from the detailed model. Different Hyper-

parameter combinations( such as learning rate, epochs, layers,

etc.) were tried to select the best of models. Fig. 5 showcases

a few samples from the hyperparameter tuning process for

hybrid 1 model. The box plots are generated by running 5

iterations of each combination. Both the hybrid and data-

driven model comprise of an LSTM layer and a dense output

layer. LSTM layer has 20 memory units. The stipulated time

steps per unit vary depending on the number of input features

as mentioned previously. In the case of Inverted Pendulum

example, the output layer has four unit cells, while for the

cancer growth it has one output unit cell. We investigated the

performance of the both models on GPU (NVIDIA GTX 1070)

with Intel Core i7-8750H @2.20 GHz, 2208 MHz, 6 cores with

12 logical processors. The above-mentioned performance met-

rics are used for performance comparison purposes. The violin

plots (in Figures such as Fig. 4(a)) are generated by running 10

epochs. Additional performance plots( Fig. 6, Fig. 7, Fig. 8),

attributed to superior performance of hybrid model, are also

included. The code and dataset for the two problems can be
found on github-https://github.com/shubhsingh55/code. Next,

we detail the results on two described example problems.
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(a) Generalizability (b) Extrapolability (c) Robustness to noisy input

Fig. 4. Violin plot for generalizability, extrapolability, and robustness of inverted pendulum

Fig. 5. Inverted Pendulum-Hyperparameter Tuning of Hybrid Model

Fig. 6. Inverted Pendulum-Regression plot of Hybrid1 Model

Fig. 7. Inverted Pendulum-Regression plot of Data-driven Model

Fig. 8. Inverted Pendulum-Performance comparison over test set

A. Inverted Pendulum

1) Generalizability

Fig. 4(a) illustrates that the hybrid model has a low MSE

range when compared to the data-driven model over

the test set. This further showcases the better predictive

capability of the hybrid model. The level 1 hybrid model

is more accurate than the level 2 hybrid model. This

illustrates that the quality of physics model (level of

abstraction) affects the performance of the hybrid model.

2) Extrapolability

On dataset outside the training range, the range of MSE

and median values for level 1 hybrid model is less

than that of level 2 hybrid and data-driven models as

shown in Fig. 4(b). In fact, the performance of data-

driven model is better than that of the level 2 hybrid

model. This illustrates that only physics models with

sufficient abstraction of real problem are useful in hybrid

modeling framework. Although physics models provide
supplementary information, poor quality physics model
can lead to the poorer performance of hybrid model
when compared to a purely data-driven model.

3) Complexity

From the results depicted in Table II, it is evident
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that the hybrid model does not compromise much on

computational efficiency and memory with performance.

Also, it can be observed that although hybrid 1 and

hybrid 2 models have the same complexity, but due to

better quality physics involved, hybrid 1 has a better

performance to cost ratio than hybrid 2.

TABLE II
COMPLEXITY

Model Flops Total calculation Memory
hybrid 1,hybrid 2 8918 4418 3208
pure data driven 5510 2810 2005

4) Robustness to noisy input

As depicted by Fig. 4(c), the hybrid models show better

stability and perform better when compared to the data-

driven model in the presence of noise. For this metric,

the level 1 hybrid model outperforms the level 2 hybrid

model.

5) Sensitivity to the number of samples

Increase in the size of training sample drastically im-

proves the performance of hybrid models when com-

pared to the data-driven model (Fig. 9). This can be

attributed to better feature capturing ability of the hybrid

model. As depicted in Fig. 9, the performance of level 1

hybrid model is better than that of level 2 hybrid model.

B. Cancer Cell Growth

1) Generalizability

As evident from Fig. 10(a), hybrid model records around

20 percent reduction in MSE values, as compared to

pure data-driven model on the test set within the training

range.

2) Extrapolability

On a dataset outside the training range, the median value

for hybrid model is less than that of data-driven model

(Fig. 10(b)), standing witness to hybrid model’s better

predictive capabilities even with unseen extrapolated

data.

3) Complexity

From the results tabulated in Table III, it is evident

that the hybrid model has a better trade-off between

performance and computational cost when compared to

a purely data-driven model.

TABLE III
COMPLEXITY

Model Flops Total calculation Memory
hybrid 5210 2510 605
pure data driven 4358 2108 554

4) Robustness to noisy input

As depicted by Fig. 10(c), the hybrid model is superior

in tackling noise when compared to the data-driven

model.

5) Sensitivity to the number of samples

The response of the hybrid model to increasing data

size is better than a purely data-driven model (Fig. 11).

This illustrates that the hybrid model has better learning

ability and eventually performs better with increasing

data set size.

VII. CONCLUSION AND FUTURE WORK

In this paper, a hybrid architecture that utilized a physics-

based model for guiding the LSTM based machine learning

model is outlined. The outlined hybrid model demonstrates

the feasibility of integrating a physics-based model with ML

models to model a physical system’s dynamics. As evident

from empirically derived results using different metrics, the

performance of hybrid models when compared to purely data-

driven model is better, for both the inverted pendulum and

tumor growth problems.

From the results, it is empirically evident that the quality

of the available physics model also plays a significant role

in determining the performance of the hybrid models. Due

to the better quality of physics involved, level 1 hybrid

architecture delivers the best performance. On the other hand

due to the involvement of comparatively lower quality physics,

level 2 hybrid lags behind level 1 hybrid model in terms of

performance. Thus, it can be emphasized that along with the

efficiency of involved data-driven architectures, the quality

of the physics-based models also affects the accuracy of the

overall hybrid model.

An avenue for future work is developing different novel

hybrid architectures based on different types of neural network

architectures such as Generative adversarial networks (GANs)

and neuro-evolution models. Creating a standardized set of

problems that can serve as a benchmark for hybrid models is

also a right direction for future work.
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