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a b s t r a c t

The ability to avoid collisions with each other is one of the fundamental requirements for autonomous
unmanned aerial vehicles (UAVs) to be safely integrated into the civilian airspace, and for the viability
of multi-UAV operations. This paper introduces a new approach for online cooperative collision
avoidance between quadcopters, involving reciprocal maneuvers, i.e., coherent maneuvers without
requiring any real-time consensus. Two maneuver strategies are presented, where UAVs respectively
change their speed or heading to avoid a collision. A learning-based framework that trains these
reciprocal actions for collision evasion (called TRACE) is developed. The primary elements of this
framework include: 1) designing simulated experiments that cover a variety of UAV–UAV approach
scenarios; 2) performing optimization to identify speed/heading change actions that satisfy safety
constraints while minimizing the energy cost of the maneuver; and 3) using the offline optimization
outcomes to train classifier (via ensemble bagged tree) and function approximation (via neural
networks and Kriging) models for respectively selecting and encoding the avoidance actions. Trajectory
generation and dynamics/controls are incorporated in the simulation environment used for training
and testing. Over 90% accuracy in action prediction and over 95% success in avoiding collisions is
observed when the trained models are applied to simulated unseen test scenarios.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Autonomous UAVs in the civilian airspace

Small unmanned aerial vehicles (UAVs) are becoming ubiqui-
tous in a wide range of low-speed/low-altitude commercial and
humanitarian applications, from precision agriculture to disas-
ter response [1]. While operational-safety concerns with regards
to human beings on the ground, tall infrastructure, and other
manned aircraft sharing the airspace, are a popular topic of main-
stream discussion and technical research on UAVs, it is also
important to realize that increasing market growth will cause
more UAVs to operate in close proximity of each other. Close
coordinated operation of UAVs is also fundamental to the concept
of UAV swarm, which involves a team of (typically simple) UAVs
collaborating in a certain manner to offer collectively-intelligent
behavior that entails significantly greater mission effectiveness
(e.g., robustness, flexibility, redundancy and scalability [2]) com-
pared to sophisticated stand-alone alternatives. In addition to
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airspace regulations [3,4], one of the major technical barriers to
integrating commercial (especially autonomous) UAVs into the
airspace or realizing UAV swarm implementations in practice is
the immaturity of autonomous collision avoidance techniques that
are applicable to a wide spectrum of UAVs in terms of cost and
sophistication [5]. Autonomous detect, sense and avoid (DSA)
techniques [6] are not only imperative to autonomous UAVs, but
are also needed as a fail-safe for remotely piloted UAVs that
are commonly used in photography, infrastructure survey, and
recreation.

While UAVs sharing the civilian airspace and teamed oper-
ation of UAVs call for reliable sense and avoid techniques [6],
they also present the opportunity to derive and exploit comple-
mentary behavior — i.e., predefined mutually-coherent or comple-
mentary maneuvers — that seek to guarantee successful collision-
avoidance in the case of friendly UAV–UAV encounters. A close
analogy would be how traffic rules ensure the safety of interac-
tions between automobiles sharing the roadway system. Such a
capability also bears the potential to alleviate the online comput-
ing load otherwise associated with independent decision-making.
This paper develops and evaluates a new (partly bio-inspired)
collision avoidance technique that is founded on this notion of
‘‘complementary maneuvers’’, and (in its current form) is appli-
cable to encounters between identical multi-rotor UAVs. The
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remaining portion of this section provides a brief survey of exist-
ing collision avoidance techniques pertinent to multi-rotor UAVs,
and an overview of the underlying concept and objectives of the
research presented here.

1.2. Existing collision avoidance approaches

Existing collision avoidance methods, w.r.t both static [7]
and dynamic obstacles [8,9] can be broadly classified [10] into:
geometric, optimized trajectory, bearing angle, force field, and
Markov decision process approaches. A summary discussion of
these approaches is provided below.

Geometric approach: These methods alter the trajectory of both
UAVs based on the location and velocity of the ownship and
intruder UAV [8]. When a collision is detected (e.g., via Kalman
filter based state estimation [11]), each agent is given a priority
number, and the one with lower priority chooses a waypoint
that is perpendicular to its velocity. Although these approaches
require the cooperation of the intruder UAV, it does not postulate
optimized rules or schemes that each UAV could follow in order
to automatically enable collision avoidance at say a minimal
energy cost.

Optimized trajectory approach: Under this category, A* and
Dijkstra’s algorithms are popularly used to compute collision-
free trajectories [12]. These algorithms work well when dealing
with stationary obstacles, but their applicability is limited in the
case of dynamic obstacles or UAV–UAV collision. In the latter
case, a reported alternative formulates the path of an agent as
an optimization problem that minimizes a cost function using
gradient descent or mixed-integer linear programming [13–15]
or optimal control theory [16].

Bearing angle approach: These methods follow a near-
continuous feedback system, where cameras are used to estimate
the relative angle of the obstacle with respect to the UAV, and
collision is prevented by keeping the obstacle image at a desired
safe position in the camera’s field of view [17,18]. While reliable
in execution, this places a significant computing demand on the
UAV and energy cost of the avoidance maneuver is typically
ignored.

Force field approach: Force-field approaches, inspired by attrac-
tion/repulsion in electrical fields, determine collision-free trajec-
tories that also satisfy other constraints [19]. The target waypoint
for an agent serves as a source of attraction, while obstacles exert
a repulsive force. In some implementations, proximity to another
UAV incites a braking force [20], while in other [21], the current
states of all agents are used to predict the trajectory over the next
T horizon using non-linear model predictive control techniques.

Markov Decision Process (MDP) approach:MDP and more recent
Partially Observable MDP (POMDP) [22,23] methods make use of
the estimated current state of the ownship with respect to its
target and (partial) knowledge of the relative state of the intruder
UAV. The Airborne Collision Avoidance System X (ACAS-X) class of
algorithms are extended to multi-rotor UAV applications, where
actions are guided by the principle of maximizing rewards that
are estimated based on the expected post-action state of the
UAV and its physical constraints (e.g., maximum acceleration).
While POMDPs are potent in providing system-aware optimal and
safe actions, the online computing burden can become intractable
and performance is highly sensitive to tunable parameters, which
in [22] are estimated using a Gaussian process approach.

Recent efforts also present the use of reinforcement learning
(RL) and deep learning (DL) to operate on the MDP [24,25] and
POMDP [26] formulations of the problem for multi-robot collision
avoidance in 3-DoF settings. While the promising performance
and extensibility (e.g., to multi-agent settings) of learnt mod-
els demonstrated in these efforts motivate our adoption of a

learning based mechanism to train light-weight online collision
avoidance models, there is not indisputable evidence pointing to
whether these existing RL/DL frameworks, in their current form,
are applicable to UAV–UAV collision avoidance.

Note that some of these existing methods are designed to
serve a more general detect-sense-avoid role, thus not necessarily
optimized for cooperative UAV–UAV encounters. The focus of this
paper is on collision avoidance between cooperative multi-rotor
UAVs, with an approach that respects the frugal onboard comput-
ing capabilities and very limited endurance of small UAVs [27,28].
With this context, the method developed herein seeks to provide
the following benefits: (i) Identify and exploit energy-optimal
mutual-coordination opportunities that account for the 6-DoF
motion complexities of multirotor systems; (ii) Significantly miti-
gate the online computing burden; (iii) Alleviate the need for con-
tinuous (high rate) communication or sensing throughout the ma-
neuver; and (iv) Allow more flexibility for extension in future into
newer capabilities (e.g., 3D maneuvers), by performing capability
appropriate design of experiments while using the same underly-
ing framework and constitutive trajectory-planning/optimization
models as presented in this paper. Moreover, unlike most recent
learning based methods, we seek to provide rigorous mathemati-
cal description of collision scenarios and a systematic design of
experiments, to automatically derive samples with guaranteed
collision occurrence (unless evaded via maneuver).

1.3. Collision avoidance via reciprocal actions: A bio-inspired per-
spective

In this paper, we seek to develop a one-on-one collision
avoidance scheme with the following unique combination of
characteristics: (1) maneuvers by the two UAVs are proactive and
complementary (or reciprocal) while requiring minimal-to-no
information exchange during maneuver; (2) avoidance maneu-
vers are collectively energy optimal for the two UAVs; and (3)
the collision-avoidance scheme is computationally lightweight,
thereby enabling quasi-instantaneous online decisions. Here ‘‘re-
ciprocal maneuvers’’ imply that the action taken by one UAV relies
on a coherent action expected from the other UAV, where their
actions collectively (seek to) prevent a collision. This notion of re-
ciprocal maneuvers is inspired by a particular behavior of birds in
a flock, recently reported in a study on budgerigars [29]. The birds
were observed to exhibit mutually-coherent collision-avoiding
maneuvers during one-to-one head-on scenarios (to distinguish
from formation flight concepts). Schiffner and Perez [29] reported
that, for a set of 102 wind tunnel experiments with a pair of birds
(from a group of ten) each time approaching towards a head-on
collision, the success rate of avoiding collisions was 100%. This
was accomplished (in a perceptibly rule-based manner) by both
birds veering to the right, above or below their original trajectory
while passing the other bird. These rules are likely a result of
evolution/learning over generations of such bird species. Similar
studies have also been conducted on humans [30], e.g., showing
how pedestrians adjust their speed and trajectory when crossing
a non-reactive human interferer approaching at different angles
and speeds (this being a non-cooperative behavior). Drawing
inspiration from the collision avoiding behavior of budgerigars,
our research asked the following questions: (1) Can we adapt
and extend this mutually-coherent or reciprocal veering strategy to
avoid collisions between UAVs approaching each other from any
angle, θ ∈ (0◦, 180◦

]; (2) How to enable these reciprocal actions
to be energy optimal and translate them into a lightweight form
that can be computed quasi-instantaneously onboard small UAVs.

In pursuing the answers to these questions, this paper de-
velops and tests a method that trains reciprocal actions for col-
lision evasion (TRACE) between multi-rotor UAVs. The develop-
ments presented here are focused on (autonomous) avoidance
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aspect of DSA; the location and velocity information of each
UAV is assumed to be available to the other UAV (through inter-
UAV communication or state-of-the-art detect/sense approaches).
Note that, given the imperfections associated with standard inter-
UAV communication and sensing of other flying objects, un-
certainties in the state estimation are expected. Although not
explicitly modeled in this paper, such state estimation uncertain-
ties can be handled by TRACE by using a higher safety factor in
terms of the minimum separation threshold implemented during
optimal maneuver planning (with the exception of cases where
the controller fails to follow the trajectory).

The technical objectives of this paper can be summarized as
follows:

1. Develop a parametric formulation of mutually-coherent
(speed or direction change) actions to avoid inter-UAV col-
lisions, and an approach to optimize these actions in terms
of energy expense (subject to flight-dynamics constraints).

2. Develop a learning model that can quasi-instantaneously
map the relative state of the two UAVs to their optimum
reciprocal actions, whenever a potential collision is identi-
fied (this model will be trained by the optimizations, and
designed to be executed on board UAVs).

3. Evaluate, through simulated experiments, the energy per-
formance and collision-avoidance success rate of: (i) the
optimized actions across a large number of UAV–UAV en-
counter scenarios and (ii) the online schemes trained
thereof.

In addition, we aim to also demonstrate the future extensibility
of our collision avoidance concept, and that of the underlying
computational framework to implement the concept, to other
collision avoidance maneuvers (altitude change maneuvers) and
collision scenarios (> two UAV collision scenarios).

The remaining portion of this paper is organized as follows:
The next section summarizes the underlying assumptions in our
method and introduces a mathematical description of inter-UAV
collision scenarios. Section 3 presents the development of the
new TRACE method for inter-UAV collision avoidance (including
design of experiments, optimization, and model training). This
is followed by a section describing the implementation settings.
Section 5 then discusses the model training and testing results.
The paper ends with concluding remarks in Section 6.

2. Scenario description & assumptions

2.1. The UAV system

The UAV–UAV encounter scenarios and the autonomous UAV
system considered here are in part motivated by the broader re-
search in the area of collaborative multi-UAV search
[31] and mapping [32] applications (which results in closely
sharing the airspace). Particularly, identical quadcopter UAVs are
assumed with the key specifications summarized in Table 2.
Similar to most other reported work in DSA: (i) the motion of
the UAVs are assumed to be in a 2D plane; (ii) a calm flying
environment with no gusts is considered; and (iii) only one-on-
one collisions are considered. We also assume that each UAV
can either communicate its current state (location, speed, and
heading direction) with its neighboring UAVs or can accurately
sense the state of neighboring UAVs (where, practically, sensing
range ≫ minimum separation required). Hence, only determinis-
tic scenarios are considered; and each UAV, based on its current
state and the information it has about its peer’s state, can predict
the possibility and time of collision with the other UAV.

2.2. Inter-UAV collision: Scenarios and detection

If the separation between two UAVs becomes lower than a
threshold distant dcol, then it is termed as a collision. The value of
dcol can be regulated based on the desired level of safety and can
be defined in terms of the UAV size (e.g., 2 × diameter of UAV).
Based on the relative speed and heading angle, the distance be-
tween any two UAVs can decrease, increase or remain the same.
In the context of collision avoidance, one is interested in the cases
where the separation distance decreases with time. In order to
predict a collision, the time and distance of minimum separation
is estimated using the current state of both the UAVs, as described
below.

As shown in Fig. 2, let PA,0 and PB,0 be the current phase of
UAVs A and B respectively at a given time point (t0), and VA,0 and
VB,0 are their respective velocity vectors. Their angle of approach,
φ, is then given by:

φ = 180◦
− cos−1

(
ˆVA,0. ˆVB,0

| ˆVA,0. ˆVB,0|

)
(1)

For simplicity of representation, vector notations are not used
here onward. We will consider a time horizon (tH ) that is safely
greater than the time required for deciding and completing any
avoidance maneuvers, (t0 ≤ t ≤ tH ). Assuming that the UAVs
continue to travel along their original path (i.e., without any
avoidance action), thus moving with a fixed velocity during this
time horizon, the locations of UAVs A and B and the Euclidean
distance between them at time t ≥ 0 are then respectively given
by:

PA(t) = PA,0 + VA,0t
PB(t) = PB,0 + VB,0t
d(t) = |PA(t) − PB(t)|

(2)

The time point at which the two UAVs will come closest to
each other can then be estimated as:

tmin = arg min d(t)
t∈[t0,tH )

(3)

If the UAVs are monotonically diverging from each other, the
solution to Eq. (3) will be tmin = t0. If a solution, tH > tmin > t0,
exists within the time horizon, and d(tmin) < dcol, then a collision
event is said to have been detected within the time horizon. In
that case, the time point of collision is given by:

tcol = arg min t
t∈(t0,tmin)

, s.t. d(t) ≤ dcol (4)

Once a collision has been detected and a subsequent avoid-
ance action has been computed, the corresponding time point is
denoted as t1. In practice, t1 can be set at any t0 < t1 < tcol, such
that t1 − t0 is safely greater than the time required by the UAV’s
onboard computing system to detect the collision and decide the
altered trajectory to take to evade the collision. For the sake of
simplicity of representation, in the remainder of the paper, we
set the time point t1 = 0. Since the maneuver cannot start before
t1, note that VA,1 = VA,0 and VB,1 = VB,0. Each UAV is then
expected to start a collision avoidance maneuver at a designed
time, t2 : t1 < t2 < t1 + µ(tcol − t1), 0 < µ ≤ 1. The value of µ
can be decided based on desired safety tolerance.

The variation of the inter-UAV separation for generic collision
evasion scenarios is illustrated in Fig. 1, where t0 < ti < tH , ∀ i =

1, . . . , 5. In this figure, the violet straight line at the bottom
represents the threshold for collision (dcol); i.e., if the separation
between the UAVs go below that threshold, it is termed as a
collision. The blue curve shows the separation distance between
two UAVs for a scenario where no collision is predicted within
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Fig. 1. Separation distance for illustrative cases with no collision, with collision,
and successful collision avoidance. Time points are t1: collision-evasion action
decided; t2: evasion maneuver starts; t3: symmetry point of evasion maneuver
(t3 = tcol); t4: evasion maneuver ends; and t5 = tH .

the time horizon. The red curve shows the separation distance
for a scenario where collision is predicted, and the separation
distance curve intersects the collision threshold, dcol (yellow line),
at time t3 = tcol — i.e., collision occurs. The green curve shows the
separation distance for the scenario where collision is predicted
(originally similar to the red scenario), but a avoidance action
is taken to successfully evade collision. Here ‘t2’ and ‘t4’ respec-
tively represent the decided time points at which the collision
avoidance maneuver begins and ends.

3. Training Reciprocal Actions for Collision Evasion (TRACE):
Framework

3.1. TRACE: Overview

Once a collision is detected, a maneuvering action needs to be
decided to avoid collision. In this paper, we consider two different
action strategies for collision avoidance: (1) Direction change:
where both the UAVs veer to the left of their original paths while
crossing each other; and (2) Speed change: where one UAV slows
down and the other speeds up to safely pass each other. While
the ‘‘direction change’’ (DC) maneuver is akin to the (head-on)
collision avoidance behavior of birds [29], the ‘‘speed change’’ (SC)
maneuver was born out of the necessity to deal with scenarios
where ‘‘direction change’’ maneuvers do not provide any feasible
solutions — this happens particularly when the UAVs approach
each other at extreme acute angles (i.e., almost traveling in the
same direction). In the case of both strategies, an episode of
collision avoidance involves four significant time points, which
are described under Fig. 1. A discrete representation of the path
changes incurred in these two strategies are illustrated in Fig. 2.

Fig. 3 illustrates how the conceived collision avoidance scheme
works. It involves the following four major steps (Fig. 3): (1)
collision prediction: as described in Section 2.2; (2) action strategy
selection: a classification process that selects the action strategy
(SC or DC) to be used, based on the observed relative pose of
the other UAV at detection; (3) action attribute estimation: a
nonlinear mapping process that estimates the attributes of the
action, e.g., deviation angle in DC (further described below) and
time when maneuver must start, based on the observed relative
pose of the other UAV at detection; and (4) waypoint genera-
tion: a process that generates intermediate waypoints based on
the action attributes. These waypoints are then converted into
a smooth flyable trajectory, which is then used by a standard
control architecture to execute the avoidance action.

Fig. 2. Representative collision/avoidance scenario, illustrating the two types of
avoidance actions (the UAVs actually take smooth trajectories guided by these
actions).

Fig. 3. TRACE: The online collision avoidance process.

Our stated aim of providing a light-weight collision avoidance
approach demands computationally-efficient alternatives to the
typically computing-heavy steps. More specifically, selecting the
optimum strategy and determining its optimum attributes can
be perceived as optimization problem(s) that aim to minimize
the additional energy cost associated with the avoidance maneu-
ver, subject to safety constraints (e.g., minimum separation) and
physical flight constraints (maximum rated speed). To obviate the
computing cost of solving an online optimization, we propose two
offline learning approaches to map the relative state of the UAVs
at time point t1 respectively to: (1) an optimum action strategy
(DC or SC), and (2) optimum values of the action attributes. A
computational framework is developed for implementing these
two offline learning approaches.

As shown in Fig. 4, this framework comprises five major com-
ponents:

• generating a tailored design of experiments (DoE) to create a
large variety of one-on-one collision scenarios (training data
set);

• optimizing the attributes of the DC/ SC collision avoidance
strategies for these DoE scenarios;

• using the scenario-inputs and outcomes of the optimization
experiments to train a classifier that selects the optimum
action strategy;

• using the scenario-inputs and outcomes of the optimiza-
tion experiments to train four multi-input-single-output or
MISO surrogate models (e.g., based on Kriging or Neural
Networks) that can then predict the optimum attributes of
the DC/SC actions; and
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Fig. 4. Computational framework for constructing TRACE.

• testing the four trained models on a new DoE of collision
scenarios (test data set) to investigate and compare the
selectivity and performance of the two optimized strategies.

The first four components of the framework, along with the
models needed for evaluation of any candidate avoidance action
(i.e., system dynamics, controls, and trajectory planning models)
are described in the following sections.

3.2. Design of Experiments (DoE)

A large set of diverse collision scenarios are designed to cap-
ture the possible wide variation in relative states of approaching
UAVs where a collision is affirmatively predicted to occur within
the time horizon (t1 ≤ tcol ≤ tH ). More specifically, a DoE is per-
formed to generate the initial phases (locations and velocities) of
the two approaching UAVs. However, in order to simultaneously
ensure that a collision event does exist within the time horizon of
the two approaching UAVs and the initial separation is enough to
allow feasible collision avoidance, a special constrained sampling
approach is needed. Any scenario failing to satisfy the designed
constraints (described later) are to be discarded from the learning
process. In addition, instead of using the initial poses of the two
UAVs to represent the input space of the DoE, the following
parameters are used to provide a closed form representation of
the relative state of the two UAVs (UAV-A and UAV-B) at time
point t1:

• Angle of the vector PAB when the separation distance becomes
smaller than the threshold → θcol;

• Heading angle of UAV-A → θA,0;
• Heading angle of UAV-B → θB,0;
• Speed of UAV-A → |VA,0|

• Speed of UAV-B → |VB,0|.

The heading angle and velocity inputs are all specified in terms
of a global coordinate system. Table 1 lists the upper and lower
bounds for these inputs.

An inverse approach is taken to perform the DoE, starting
with points where the UAVs are separated by a distance of dcol,
the specified separation threshold. The points PA,col and PB,col are
respectively the locations of UAV-A and UAV-B at t = tcol, if the
UAVs had continued on their original path with no avoidance
maneuver. The angles θA,0 and θB,0 are chosen in a manner that
guarantees the separation distance, d(t < tcol) > dcol. The initial
speeds are then chosen randomly in a range that is practical for
UAVs. Fig. 5 illustrates the DoE procedure.

DoE constraints: If constraints were applied post sampling for
filtering out UAV–UAV approach scenarios where either no colli-
sion is detected or where collision is inevitable (i.e., no feasible

Table 1
Range of the input parameters in the DoE.
Parameter Lower bound Upper bound

θcol 0◦ 360◦

θA,0 θcol − 90◦ θcol + 90◦

θB,0 θcol + 90◦ θcol + 270◦

|VA,0| 0.1 m/s Vmax
|VB,0| 0.1 m/s Vmax

Fig. 5. DoE process: 1: Set global origin: midway between UAVs at t = tcol . 2:
Find separation vector PAB making angle θcol with global X-axis. 3: Determine
the UAV positions at tcol . 4: Identify UAV heading directions over the time t0
to tcol . 5: Identify the UAV velocities (VA,0, VB,0) over this time. 6: Estimate the
UAVs’ initial positions (PA,0, PB,0).

avoidance actions exist), the sampling process would have be-
come iterative and time consuming, and possibly biased. Instead,
a novel inverse approach is taken, with the practical assumption
that UAVs are at a safe distance when a potential collision has
been identified within the time horizon. To this end, we set tcol =

5 s.
For the DoE, first, uniform random sampling is performed in

the space of the five inputs listed in Table 1 (θcol, θA, θB, |VA|, |VB|).
Optimal Latin Hypercube Sampling (LHS) [33] is used for this
purpose. Through a backward in time computation (assuming
fixed velocities if no maneuver is taken), the resulting samples
are then converted into the corresponding initial poses of the two
UAVs (PA,0, VA,0, PB,0, VB,0). The conversion process is described
below.

The origin (0,0) of the global coordinate system is considered
to be at the mid-point of the vector PAB connecting UAV-A and
UAV-B at t = tcol. Then, for each sample scenario, using the input
parameter θcol and the prescribed minimum separation threshold
of dcol, the position of the two UAVs at tcol can be expressed as:

PA,col =

(
−

dcol
2

cos(θcol), −
dcol
2

sin(θcol)
)

(5)

PB,col =

(
dcol
2

cos(θcol),
dcol
2

sin(θcol)
)

(6)

Then, assuming the situation where no maneuver action is
taken (i.e., the UAVs had continued on their original paths), the
initial position of the two UAVs at t0 are given by:

PA,0 = PA,col − VA,0.tcol (7)

PB,0 = PB,col − VB,0.tcol (8)

where

VA,0 =
(
|VA| cos(θA,0), |VA| sin(θA,0)

)
(9)
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VB,0 =
(
|VB| cos(θB,0), |VB| sin(θB,0)

)
(10)

and where θA, θB, |VA|, and |VB| are input parameters determined
by the sampling.

The following two sub-sections describe how the avoidance
actions are parameterized under the SC/DC strategies, and how
the optimum action attributes are determined for any given sam-
ple scenario — leading to the estimation of the sample outputs.

3.3. Optimal collision avoidance strategies

3.3.1. Speed Change (SC) strategy
In this strategy, we establish a rule whereby the speed of

the faster UAV (say UAV-A) is increased and the speed of the
slower UAV (say UAV-B) is decreased, both up to the predicted
collision time point (stage-1). Then the reverse action is under-
taken by both UAVs to get back to their original speeds (stage-2)
such that no net loss/gain in time is incurred over the span of
the maneuver (refer Fig. 2). The mutually coherent two-stage SC
strategy is defined in terms of the average change in speed, δV
(same in magnitude for both UAVs), and the time point, t2, when
the SC maneuver initiates — together serving as the SC action
attributes, to be optimized. The faster UAV accelerates between t2
and t3 = tcol in a manner such that its average increase in speed
is δV , and then decelerates back to its original speed by the time
point, t4 = t3+(t3−t2). The slower UAV does exactly the opposite
during the corresponding time periods. Note that the SC action is
symmetric about the time point t3. The average velocity of the
UAVs during the avoidance maneuver, i.e., between time points
t2 to t3 and t3 to t4 are given by:

V A,2−3 = (|VA,1| + δV ).
VA,1

|VA,1|

V B,2−3 = (|VB,1| − δV ).
VB,1

|VB,1|

(11)

V A,3−4 =
VA,1(t4 − t2) − VA,2−3(t3 − t2)

t4 − t3

V B,3−4 =
VB,1(t4 − t2) − VB,2−3(t3 − t2)

t4 − t3

(12)

These average speed estimates will be later used (in Section 3.4.2)
to compute the intermediate waypoints defining the altered path
associated with the SC maneuver of the two UAVs.

Let us restate the objective of optimal collision avoidance
maneuvers in this paper:

• perform a path change that incurs minimum added energy
expense compared to the original path,

• while maintaining an inter-UAV separation that is greater
than the safety threshold (dcol), and

• while satisfying other constraints (e.g., the maximum rated
speed of the UAVs).

For the SC maneuver, this optimization problem can be formu-
lated as:

Objective:

min
t2,δV

f (t2, δV , PA,0, PB,0, VA,0, VB,0) = EA + EB (13)

Subject to:
g1 : max(|VA(t)|, |VB(t)|) ≤ Vmax, ∀ t2 ≤ t ≤ t4
g2 : d(t) ≥ dcol, ∀ t2 ≤ t ≤ t4

(14)

Design variable bounds:
t1 ≤ t2 ≤ µ.tcol, ∈ R
0 ≤ δV ≤ δV ,max, ∈ R
δV ,max = min {min{|VA,0|, |VB,0|},

Vmax − max{|VA,0|, |VB,0|}}

(15)

Fig. 6. Direction change (DC) strategy: illustrating planned and executed
trajectories (of UAVs A and B) under this strategy.

In Eq. (13), EA and EB respectively represent the energy consump-
tion of UAV-A and UAV-B over the entire time period, t1 to t5 (that
is inclusive of the period when the avoidance maneuver is active);
the energy consumption is given by Eq. (25), described later in
Section 3.4.4. The separation distance d(t) used in the optimiza-
tion (Eq. (14)) is given by Eq. (2). In Eq. (15), µ is a prescribed
time safety factor that ensures sufficient time is available for the
collision avoidance maneuver. The parameter Vmax represents the
maximum rated speed of the UAVs.

3.3.2. Direction Change (DC) strategy
In this strategy, we establish a rule whereby each UAV always

deviates to the left of its original path at time point t2. At time
point tcol (when the UAVs are at their respective extreme devi-
ation point), both UAVs turn right to get back to their original
path by time point t4. A smooth trajectory is planned to execute
the maneuver. The approaching UAVs are designated as UAV-A
and UAV-B in a way such that the heading of UAV-A is (0◦

−

180◦) rotated w.r.t. the heading of UAV-B, where the direction
of rotation is counterclockwise. If the designation definition of
UAV-A and UAV-B and the approach angle measurement direction
are reversed, this would transform to both UAVs turning right.
Fig. 6 provides a representative illustration of a DC maneuver,
showing both the planned and the controller executed trajectory
of the UAVs. Note that, the ‘‘return to original path’’ constraint
is deliberately imposed to allow applicability of our collision
avoidance concept to UAV missions where following a planned
(often temporally encoded) path is critical to the purpose of the
mission, e.g., in data collection missions pertinent to mapping
and reconnaissance applications [34,35]. The TRACE concept will
readily extend to mission scenarios where this constraint is lifted,
potentially allowing even more energy optimal maneuvers (since
the feasible space of maneuvers then becomes expanded).

Similar to the SC action strategy, DC can also be perceived as
a mutually coherent two-stage maneuver. The DC action is defined
in terms of the time point, t2, when the DC maneuver initiates,
and the effective change or deviation (going counterclockwise) in
the heading direction of the UAVs, angle φ (same for both UAVs),
incurred between the time point t2 and the predicted collision
time point (t3 = tcol). Subsequently, between the times points t3
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and t4, the UAVs turn back (clockwise) in a manner such that their
path/heading merges with the original path/heading by the time
point t4. Note that the DC maneuver is also symmetric about the
time point t3, and is also designed such that no net loss/gain in
time is incurred during the time span of the maneuver. The latter
condition (for both strategies) is used to ensure that the collision
avoidance actions do not affect the overall task schedule of the
UAVs in the case of time sensitive missions [32]; this condition
can however be relaxed in future implementations given the
associated potential risk of actuator saturation.

The original path is a straight line and any deviation results in
a longer path to be completed in the same time interval. There-
fore both UAVs need to speed up, where their average velocity
during the DC maneuver can be expressed as:

V A,2−3 =
1

cosφ
R VA,1

V B,2−3 =
1

cosφ
R VB,1

(16)

where R is the standard (counterclockwise) rotation matrix in 2D
space. The estimated average speed during the avoidance maneu-
ver will be used later on in waypoint planning (Section 3.4.2).

With the same objective and constraints as considered in the
SC strategy, the optimization problem for the DC maneuver can
be expressed as:

Objective:

min
t2,φ

f (t2, φ, PA,0, PB,0, VA,0, VB,0) = EA + EB (17)

Subject to:
g1 : max(|VA(t)|, |VB(t)|) ≤ Vmax, t2 ≤ t ≤ t4
g2 : d(t) ≥ dcol, t2 ≤ t ≤ t4

(18)

Design variables:
t1 ≤ t2 ≤ µ.tcol, ∈ R
0 ≤ φ ≤ φmax, ∈ R

(19)

From numerical experiments, the optimal value of the deviation
angle (change in heading) was observed to be typically smaller
than 30◦, and hence φmax was set at 30◦ to helpfully curtail the
search space.

3.3.3. Optimization solution approach
It is important to note that, both the SC and DC strategies

combine the energy consumption of the two UAVs to form a
single objective function, thus not paying any special attention
to potential trade-offs between the energy cost incurred by the
two UAVs. This is done for simplicity of implementation, given
the complexity of the overall TRACE framework proposed in
this paper. Future implementations could either pursue a multi-
objective optimization approach or impose constraints on the
difference in relative additional energy cost incurred by the two
UAVs (performing the avoidance maneuvers), in order to facilitate
fair distribution of the increased energy expense.

Currently, both the optimization problems, Eqs. (13)–(15) and
Eqs. (17)–(19), can be classified as constrained single objective
nonlinear optimization problems. From preliminary numerical
experiments, the optimization problems were observed to be
multi-modal, and the following standard nonlinear optimization
algorithms were tested: sequential quadratic programming, ge-
netic algorithms, and swarm optimization algorithms. This al-
lowed us to converge on the usage of Particle Swarm Optimiza-
tion (PSO) algorithm. In this context, we paid more attention
to the quality of the optimum obtained compared to the minor
differences in computational cost, since the optimizations are
performed offline for each DoE sample. Specifically, we exploited
a well-known implementation of the PSO algorithm that offers
robustness through explicit diversity preservation [36].

Fig. 7. Trajectory generation and tracking.

3.4. UAV performance modeling

3.4.1. Modeling summary
In order to evaluate the objective function (UAVs’ energy con-

sumption) and the constraint functions (separation distance and
flight performance constraints) for any given candidate SC or DC
action, the following four steps (shown in Fig. 7) are undertaken:
(i) waypoint planning, (ii) flyable trajectory generation based on
these waypoints, (iii) simulation of the control system seeking
to fly the generated trajectory, and (iv) and estimation of energy
consumption based on this simulation. These steps are described
next.

3.4.2. Waypoint planning
A set of (intermediate) waypoints are generated to define the

altered path taken by the UAVs under a collision avoidance action.
Given the initial locations of the UAVs (PA,1 and PB,1) at time point
t1 = 0, the waypoint planning process determines the two UAVs’
locations at the succeeding time points (t2 to t5), as a function of
action attributes and assumed constraints — i.e., the UAVs must
get back to their original path at t4 without any net loss/gain in
time.

These waypoints are computed in vector form by:

PA,2 = PA,1 + VA,1(t2 − t1)
PB,2 = PB,1 + VB,1(t2 − t1)

PA,3 = PA,2 + V A,2−3(t3 − t2)

PB,3 = PB,2 + V B,2−3(t3 − t2)
PA,4 = PA,1 + VA,1(t4 − t1)
PB,4 = PB,1 + VB,1(t4 − t1)
PA,5 = PA,1 + VA,1(t5 − t1)
PB,5 = PB,1 + VB,1(t5 − t1)

(20)

In the case of the speed change (SC) strategy, the velocity V A,2−3
and V B,2−3 used in waypoint generation are given by Eq. (11).
In the case of the direction change (DC) strategy, the velocity
V A,2−3 and V B,2−3 are given by Eq. (16). Note that, under the
DC action, the designed waypoints, PA,2, PA,3, and PA,4 form an
isosceles triangle with a base angle of φ (the designed change in
heading; an action attribute).

3.4.3. Trajectory generation
The time-stamped intermediate waypoints must be translated

into a flyable trajectory that passes through these waypoints.
The trajectory can be any single or piece-wise polynomial. If p(t)
represents the generic polynomial modeling the UAV’s trajectory,
and wk and vk respectively represent its ith waypoint (Pk, as given
by Eq. (20)) and velocity at that waypoint (Vk), then the trajectory
polynomial has to satisfy the following conditions:

p(tk) = wk, k = 1, 2, . . . , 5
ṗ(tk) = vk, k = 1, 5

(21)
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Fig. 8. Piece-wise polynomials connecting waypoints.

Minimum snap trajectory: In this work, we use a piece-wise
polynomial trajectory model called the ’Minimum Snap trajec-
tory’, introduced by Mellinger and Kumar [37]. ‘‘Snap’’ represents
the 4th derivative of the UAV path. As the motor inputs and at-
titude accelerations (abrupt variations of which are undesirable)
of the UAV are proportional to the snap of the path, minimum
snap piece-wise polynomials (or splines) prove to be effective in
modeling trajectories of multi-rotor UAVs [38]. A minimum snap
trajectory provides a smooth path through the way points, while
satisfying the conditions expressed in Eq. (21).

Given a set of n + 1 waypoints with their corresponding time
stamps, the minimum snap trajectory generates a piece-wise 7th
order polynomial, comprising n segments. Let w1, w2, . . . , wn+1
be the set of n + 1 time-stamped waypoints and s1, s2, . . . , sn+1
be their corresponding time points. Each polynomial segment pi
between the consecutive waypoints wi and wi+1 (Fig. 8), can then
be expressed as:

pi(t) = αi0 + αi1
t − si

si+1 − si
+ αi2

(
t − si

si+1 − si

)2

+ · · ·

. . .+ αi7

(
t − si

si+1 − si

)7 (22)

Therefore, to create the complete trajectory, we need to de-
termine all the 8n coefficients, αij, where j = 0, 1, 2, . . . , 7 and
i = 1, 2, . . . , n. These coefficients can be obtained by solving the
following linear system of 8n equations:

pi(si) = wi, ∀ i = 1, . . . , n [n eqs.]
pi(si+1) = wi+1, ∀ i = 1, . . . , n [n eqs.]
ṗ1(s1) = ṗn(sn+1) = v1, [2 eqs.]
ṗi(si+1) = ṗi+1(si+1), ∀ i = 1, . . . , n − 1 [n − 1 eqs.]
p̈i(si+1) = p̈i+1(si+1), ∀ i = 1, . . . , n − 1 [n − 1 eqs.]

p(k)i (si+1) = p(k)i+1(si+1), ∀ i = 1, . . . , n − 1 and
k = 3, . . . , 6 [4n − 4 eqs.]

p(k)1 (s1) = p(k)n (sn+1) = 0, ∀ k = 2, 3 [4 eqs.]

(23)

Note that we will have one system of linear equations (defin-
ing the polynomial) each for the time-varying x and y coordinate
of the trajectory. Each linear system of 8n equations (Aα = b)
can be solved using standard techniques, to yield the coefficient
vector α. When implementing Eq. (23) in TRACE, n = 4, and
v1 represents the original velocity of the UAV that is taking a
collision evasion action.

3.4.4. Dynamics-controls and energy estimation
Here we assume that the quadcopters do not perform com-

plex maneuvers, and hence the yaw is small. This allows us to
implement a simple PID controller for trajectory tracking. Since
developing a robust controller for the quadcopter is not a focus
of this paper, the PID gains used for the simulations are not
particularly fine tuned. For the controller, the state of the system
consists of its position (X), velocity (V ), the Euler angles (Φ , Θ ,

Ψ ) and rate of change of Euler angles (Φ̇ , Θ̇ , Ψ̇ ) , which are
typically estimated from the onboard GPS and IMU information.
The control system consists of two nested loops. The outer loop
performs position control while the inner loop performs attitude
control. The inner loop is executed 5 times within the outer loop.
The outer loop determines the required total force and the de-
sired Euler angles. The inner loop determines the moments with
respect to all the axes. The total force and the moments are fed to
the quadcopter dynamics model (adopted from Luukkonen [39])
which computes the thrust for all four rotors and the resulting
new state of the UAV. The thrust is in turn used to estimate the
power consumption attributed to the four motors.

In this paper, the controller time step is set to 0.05 s for
the outer loop and 0.01 s for the inner loop. Hence, during a
simulation, as the UAVs follow their trajectory, the thrusts from
all four motors of each UAV are estimated at a 0.01 s interval.
Subsequently, the power drawn by the four motors is estimated
using the following empirical formula adopted from [40]:

Wj = 5.8688 × T 1.4412
j , j = 1, 2, 3, 4 (24)

Here, Ti and Wi respectively represent the thrust generated (in
Newtons) and the power drawn (in Watts) by rotor/motor-i, and
the given relationship corresponds to the measured performance
of off-the-shelf rotor/motor units used for small quadcopters [40].
The total energy consumption of the UAV between time points t1
and t5 can then be expressed as:

E =

4∑
i=1

∫ ti+1

ti

4∑
j=1

Pj(t)dt (25)

where the above equation is estimated numerically.

3.5. Training the online TRACE scheme

Steps 2 and 3 of the TRACE method, namely action strat-
egy selection and action attributes estimation, are performed
by a classification model and a function approximation model,
respectively (as shown in Fig. 4). The classification models are
constructed using feed-forward Neural Networks (NN), and both
NN regression and Kriging interpolation are explored to per-
form the function approximation. To these ends, we use the DoE
samples (collision scenarios) and sample outputs (corresponding
optimized actions) given by the offline optimizations. The model
construction processes are described next.

3.5.1. Classifier training: Action selection
Selecting the better action strategy, between SC or DC, is posed

as a binary classification problem, as shown earlier in Fig. 3. The
inputs to this classification model are the relative initial poses of
the two UAVs at the time point of collision detection (t0), which
are PA,0, VA,0, PB,0 and VB,0 (i.e., a total of 8 inputs).

The label for each training (DoE) sample is assigned by com-
paring the estimated performance of the corresponding opti-
mized SC action (solution of Eqs. (13) to (15)) and optimized DC
action (solution of Eqs. (17) to (15)). The comparison is driven
by a constrained dominance principle, which gives feasibility
preference over objective function value; and in this case can be
expressed as:

Strategy J dominates strategy K , iff:

• Case I: d(t)
⏐⏐min
J & d(t)

⏐⏐min
K > dcol and

(EA + EB)|J< (EA + EB)|K , OR
• Case II: d(t)

⏐⏐min
J > dcol > d(t)

⏐⏐min
K , OR

• Case III: dcol > d(t)
⏐⏐min
J > d(t)

⏐⏐min
K .
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Fig. 9. Inputs/outputs for the TRACE models that decide the action attributes in
real-time.

where J and K can be either SC or DC, and d(t)
⏐⏐min
J and d(t)

⏐⏐min
K

respectively represent the minimum separation occurring during
the maneuver (from t1 to t5) when the optimized J and K strategy
are used. Case I above represents scenarios where both optimized
strategies provide feasible actions, and the more energy-efficient
one is chosen. Case II represents scenarios where only one of the
strategies provide a feasible action (in terms of required sepa-
ration distance) and that is the one chosen. Case III represents
scenarios where both strategies are unable to produce a feasible
action, and the one with the smaller constraint violation is cho-
sen. Further details of the prediction models used for training and
the training settings are provided in Section 4.

3.5.2. Function approximation: Action attribute estimation
Four separate multi-input–single-output (MISO) function ap-

proximation models (aka. surrogate models) are developed to
map collision scenarios to the optimum action attributes defining
the SC and DC maneuver, as illustrated in Fig. 9 — let us call
them ‘‘action attribute estimators’’. These models are trained over
the sample scenarios given by the DoE. For the SC strategy, two
surrogate models are trained to predict the time point at which
the action ensues (t2) and the average change in speed (δV ) to be
incurred. For the DC strategy, two surrogate models are trained
to predict the time point at which the action ensues (t2) and the
effective change in the heading direction (φ) to be incurred. The
output labels corresponding to the two SC and the two DC action
attributes are given by the outcomes of the offline optimizations
over the DoE samples — i.e., SC attributes (t∗2 , δ

∗

V ) given by solving
Eqs. (13)–(15) and DC attributes (t∗2 , φ

∗) given by solving Eqs.
(17)–(19).

We used eight inputs for each MISO model, which represent
the initial position and velocity of the two UAVs, i.e., PA,0, VA,0,
PB,0, and VB,0 (a total of 8 inputs). Input samples containing a
reflex angle of approach (i.e., δθ > 180◦) are transformed into
the analogous acute/obtuse angle of approach scenario. Given
the natural symmetry of approach scenarios (defined in a 2D
plane), every reflex angle of approach case has an equivalent
acute/obtuse angle of approach representation, once the desig-
nations of UAV-A and UAV-B are reversed. Note that the state
vector comprising the inputs for surrogate modeling is redundant,
since a set of 5 state variables or inputs can uniquely define
any approach scenario in a 2D plane. Our choice of this 8-sized
input vector was driven by the favorable comparison of the cor-
responding resulting models w.r.t those trained on a vector of 5
inputs.

The ‘‘action attribute estimator’’ models are constructed using
Multi Layer Percepteron (feedforward) Neural Networks and Krig-
ing (a Gaussian Process implementation). To train these models,

Table 2
UAV specifications.
Parameters Value

Quadcopter UAV structure Plus (+)
UAV Weight 1 kg
UAV Max speed 15 m/s
UAV Max Thrust 8 × Weight
UAV size (diameter) 0.5 m
Safe separation distance (dcol) 3 × size (1.5 m)
Detection-to-collision time (tcol) 5 s
Decision time factor (µ) 0.6

the COSMOS framework is used [41], which allows automated
model and kernel selection and automated hyper-parameter tun-
ing. To this end, COSMOS uses a predictive K-fold cross-validation
implementation [42]. The selected function approximation mod-
els are reported in Section 4.

It is important to note that the offline trained ‘‘action attribute
estimator’’ models in TRACE operate in an open loop fashion
(Fig. 3), without seeking to perform any online adaptation. In its
current form, uncertainties, e.g., due to sensing/state-estimation
inaccuracies and environmental factors such as gusts, are not
accounted for. Stated otherwise, each UAV is expected to ex-
ecute their independently-decided (but reciprocal) actions per-
fectly, and thus the outcome of their actions is assumed to be
deterministic.

4. TRACE: Implementation settings

4.1. Simulation environment and settings

The physical properties and safety thresholds assumed for the
quadcopter UAVs are summarized in Table 2; these are derived
based on popular small quadcopter platforms such as the DJI
Phantom.

Although the collision threshold is defined as 1.5 m, a safety
factor of 2 is used in the optimization by setting the dcol in the
constraints (Eqs. (14) and (18)) to be 3.0 m. This safety factor
is considered to compensate for the uncertainty introduced by
modeling the optimal actions (to be implemented online) via a
regression.

The computational framework for constructing TRACE (Fig. 4),
comprising the DoE, optimization, training of the learning models
(for action selection and attribute estimation), and the supporting
models (for simulating the dynamics, controls, and trajectory
planning) are implemented via MATLAB.

4.2. Optimization and learning settings

The optimization problems for speed change (SC) and direc-
tion change (DC) maneuvers consist of a single objective and two
constraints. Through preliminary numerical experiments with
standard gradient-based (SQP), genetic algorithm (GA) and par-
ticle swarm optimization (PSO) solvers, PSO was identified to
provide better performance. Specifically, we used a variant of
the PSO algorithm called MDPSO [36]. The MDPSO algorithm
is run using a particle population size of 20 and a maximum
allowed iteration of 50. Default values are used for the other
parameters [36], which included a relative termination tolerance
of 1e−06 on the objective function. The average time taken for
each function evaluation (i.e., simulating the trajectory planning
and entire control/dynamics of the maneuver) is ∼4 s, running on
a single core of a Intel Core i7 7830, 16GB RAM, CPU. Given the
high computing cost of running the sample optimizations, parallel
computing capabilities, with ∼372–440 nodes of type Intel Xeon



10 A. Behjat, S. Paul and S. Chowdhury / Robotics and Autonomous Systems 121 (2019) 103270

Table 3
Selected classifier and function approximation models and
settings: action selection and attribute estimation.
Classifier parameter Choice

Total # samples 4271
# Samples for training 3846 (∼90%)
# Samples for testing 425 (∼10%)
Model type Ensemble bagged tree
Testing error (MSE) 12.4%

Func. Approx. Param. Choice

# Samples for training 3846 (∼90%)
# Samples for testing 425 (∼10%)
DC: t2: Model type MLP-NN, 20 hidden neurons
DC: φ: Model type, Kriging, exponential kernel
SC: t2: Model type MLP-NN, 3 hidden neurons
SC: δV : Model type Kriging, exponential kernel

E5645 (12 core) CPU and 48GB RAM, is exploited to evaluate the
DoE samples.

For classification (action strategy selection), different built
in classifiers in MATLAB are applied, and the one with highest
accuracy (lowest mean squared error in testing) is selected. The
optimization results obtained with the DC and SC maneuver over
each DoE sample is subjected to the dominance principles (Case I
to III in Section 3.5.1) to identify the corresponding classification
label. For function approximation (action attribute estimation),
COSMOS exploits the built-in neural network tools in MATLAB
and the DACE Kriging implementation [43]. In this case, the labels
are given by the optimized SC/DC action parameters obtained for
the DoE samples. The selected model types and related parameter
settings for training are summarized in Table 3.

5. TRACE: Results and discussion

5.1. TRACE: Optimization results

The main optimization results on the design of experiments is
presented and discussed here. In the next sub-section, we present
the formulation and outcomes of the ad hoc optimizations that
are performed to demonstrate the extensibility of the TRACE
framework to handle altitude change maneuvers and maneu-
vers under multi-UAV collision scenarios. The same optimization
method and settings, as stated in Section 4.2, are used in the main
DoE and the additional case study’s.

A total of 4271 samples is generated by the DoE, each repre-
senting a unique collision scenario. The two strategies combined,
the optimization process is able to find feasible solutions in 99.2%
of the DoE scenarios. The inability to find a feasible maneuver by
either SC/DC optimization in the remaining 0.8% scenarios can be
attributed to the failure of the controller in maintaining stable
flight for the planned trajectory (corresponding to the obtained
best candidate actions for that scenario). The pie charts in Fig. 10
illustrates the success rate of the optimized SC and DC maneuvers
in finding feasible solutions (i.e., successful collision avoidance)
across various approach angle scenarios. It is readily evident that
success rate is strongly dependent on the approach angle of the
two UAVs — e.g., at near head-on collision scenarios (135◦-180◦),
SC maneuver becomes ineffective, thus leading to a relatively high
43.3% of cases where only optimized DC maneuvers are successful
(DC only in Fig. 10(d)). For the other three angle ranges, success
overlap (i.e., where both optimized SC/DC is feasible) remains
relatively the same. Overall, the DC maneuver can be said to be
more effective across a wider range of training scenarios.

Figs. 11 and 12 respectively show the increase in energy
consumption resulting from the optimized SC and DC maneuvers,
for different angles of approach between the two UAVs, across the

Fig. 10. Fraction of training samples with successful collision avoidance (i.e., min
separation distance >3 m) by the optimized SC/DC actions for different range of
approach angle, φ: (a) [0◦–45◦], (b) [45◦–90◦], (c) [90◦–135◦], (d) [135◦–180◦].

Fig. 11. Speed change (SC) strategy: Increase in energy consumption during
maneuver (compared to original path) w.r.t. different approach angles across
the DoE.

DoE. Here, the increase in energy is computed w.r.t. the energy
cost of both UAVs following the original path without any ma-
neuver. Note that, while a typical quadcopter UAV (as used here)
has an energy-optimal forward flight speed, the DoE considers
a range of initial speeds (for robustness); thus, there is a small
fraction of maneuvers where the net change in energy is negative
(if the maneuver brings the UAV closer to their energy-optimal
speed). The following is observed from Figs. 11 and 12: (i) for the
optimized SC maneuver, the % increase in energy consumption
(with median value at 0.5%) is most significant at higher angles
of approach (135◦–180◦), with a large variance observed in near
head-on scenarios that demand drastic changes in UAV speeds;
and (ii) for the optimized DC maneuver, the % increase in energy
consumption (with median value at 0.5%) is most significant at
very low angles of approach (0◦–45◦). Overall, particularly with
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Fig. 12. Direction change (DC) strategy: Increase in energy consumption during
maneuver (compared to original path) w.r.t. different approach angles across the
DoE.

the optimized DC maneuver, the % change in energy consumption
is desirably low (below 2.5% across all cases).

Figs. 13 and 14 respectively show the minimum distance of
separation occurring under the optimized SC and DC maneuvers
for different angles of approach across the DoE. The thick red
line in both figures represent the actual minimum separation
threshold (UAVs getting closer than that threshold is marked as
a collision), while a double of that (dcol = 3.0 m) was set as the
threshold in the optimization. Overall, Figs. 13 and 14 illustrate
that both SC and DC maneuver effectively avoid collision, and
very small variance is observed in this avoidance performance.
The only expected exception, as noted earlier, is in the case of
SC maneuvers under high approach angle scenarios (135◦–180◦).
The small, but noticeable variance (with some cases maintain-
ing greater than the threshold of 3.0 m minimum separation),
observed with the optimized DC maneuver (Fig. 14) can be at-
tributed to scenarios where the energy cost associated with the
initial state is significantly deviated from the inherent energy
optimal forward flight speed of the UAV.

To analyze the nature of optimal avoidance actions across
the different collision scenarios covered by the entire sample
set, histograms of the optimum action attributes are provided in
Fig. 15. It can be seen from this figure that, for both strategies
the maneuver initiation time, t2, is relatively close to the detec-
tion time in most cases, emphasizing the importance of effective
sensing/detection methods. This observation can also be partly
attributed to the relatively small time-to-collision window of 5s
used in this paper. For SC, most scenarios required very small
change in speed, typically smaller than 1.0 m/s. For DC, majority
of the optimal actions required a deviation in heading angle of
about 0◦ to 10◦.

5.2. Demonstrating extensibility of TRACE

5.2.1. Reciprocal altitude change maneuvers
Here, we present a case study to show how the optimization

formulation and solution strategy can be readily extended to
allow ‘‘altitude change’’ or AC maneuvers as a third option. While
‘‘direction change’’ or DC maneuvers involves temporary path

Fig. 13. Speed change (SC) strategy: Minimum separation distance occurring
during maneuver w.r.t. different approach angles across the DoE.

Fig. 14. Direction change (DC) strategy: Minimum separation distance occurring
during maneuver w.r.t. different approach angles across the DoE.

deviations in the horizontal plane (the altitude remaining the
same), the AC maneuver involves temporary path deviation in the
axial plane (the aircraft’s compass direction remaining the same).
Both DC and AC are special cases of the more generalized (albeit
more complex) planar path deviation maneuver in 3D space. This
general maneuver can also be handled with TRACE in the future,
by using two angular parameters to define the maneuver, with
one parameter encoding the angle of the maneuver plane (say M-
plane) w.r.t. the horizontal plane and another parameter encoding
the UAV’s deviation from its original heading direction measured
along this M-plane.

For the AC maneuver, we use the same minimum separation
threshold (dcol) settings for ease of illustration. In practice, in the
case of AC maneuvers, further careful investigation is needed to
consider the aerodynamic downwash effects (of the upper UAV
on the lower UAV), which might potentially lead to increasing
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Fig. 15. Optimal action distribution.

the dcol value for AC maneuvers. The overall optimization formu-
lation of the AC maneuver is relatively similar to that of the DC
maneuver, and can be stated as:

Objective:

min
t2,ψ

f (t2, ψ, PA,0, PB,0, VA,0, VB,0) = EA + EB (26)

Subject to:

g1 : max(|VA(t)|, |VB(t)|) ≤ Vmax, t2 ≤ t ≤ t4
g2 : d(t) ≥ dcol, t2 ≤ t ≤ t4

(27)

Design variables:

t1 ≤ t2 ≤ µ.tcol, ∈ R
0 ≤ ψ ≤ ψmax, ∈ R

(28)

Here ψ is the angular deviation of the UAV from its path in
the local X–Z plane. One UAV deviates downward with this angle,
while the other deviates upwards with this same angle (just as in
DC, decision is conflict free based on the unique designation of
the UAVs as A and B). For the ad hoc case study illustrating how
the AC maneuvers works in the case of a given collision scenario,
we set the upper bound of this deviation angle at ψmax = π/6.

The ad hoc optimization is performed for a scenario where the
two UAVs are approaching each other at and angle of 146.3◦, with
UAV-A and UAV-B flying at 1.07 m/s and 1.29 m/s, respectively.
Based on their original paths, the UAVs would be passing within
0.56 m of each other. Fig. 16 shows the trajectory of the two
UAVs in X–Y and X–Z planes, where the gray dashed lines show
the original paths of the two UAVs, and the blue/red circled
curves show the (planned/executed) optimized paths under the
AC maneuver. Under the optimized AC maneuver, collision is
successfully avoided, with the minimum separation staying above
3.06 m throughout the maneuver. It is evident from this illus-
tration that our modeling/optimization approaches are capable of
handling altitude change maneuvers, and TRACE’s model-training
framework can be readily extended in the future to not only
include altitude change maneuvers, but also the more general pa-
rameterized 3D maneuvers as described earlier. Incorporation of
AC maneuvers however might require revisiting the choice of the

Fig. 16. Collision avoidance with Altitude Change (AC) maneuver by UAVs A and
B; gray dashed lines show the original paths; blue and red curves respectively
depict the planned and controller-executed trajectories. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

underlying controller, since AC maneuvers present unique control
challenges, as evident from the noticeable deviations between the
planned and controller executed trajectory (blue and red curves
in Fig. 16).

5.2.2. Multiple UAV collision maneuvers
Unlike 3-DoF ground robots studied in [24,44,45], UAVs typ-

ically operate over much larger spaces, even in collaborative
search and mapping applications that motivated this work. As
a result, the likelihood of more than two UAVs simultaneously
arriving at a collision situation is low, with the probability of such
occurrences becoming negligible above 3-UAV scenarios; this can
be readily checked with simulated numerical experiments. How-
ever, to demonstrate that the modeling/optimizations developed
in the TRACE framework could still be applicable (with extension)
to handle more complex UAV–UAV collision scenarios, a brief
case study is provided here showing how to perform optimized
collision avoidance with 4 UAVs.

In the case of 4-UAV collision avoidance, the maneuvers, while
still reciprocal, need not be symmetric. The space of feasible
maneuver solutions (agnostic of the method used to compute the
maneuver) significantly decreases as one increases the number
of simultaneously-colliding UAVs. Thus, we remove the restric-
tion of all UAVs needing to choose either the SC maneuver or
the DC maneuver; i.e., in this case, the maneuvers of the four
UAVs can be some combination of SC and DC, depending on
what yields the most energy optimal performance subject to
the separation constraints. Therefore, to allow greater flexibility,
here the optimization parametrization is extended to include
5 design variables for each UAV. Taken together for the four
UAVs, the 4-element variable vectors now include the maneuver
strategy selections (s̄), the times to start the SC or DC maneuvers
(t̄2,SC or t̄2,DC), the angular deviations for the DC maneuver (φ̄),
and the speed changes for the SC maneuver (δ̄V ). The expanded
optimization problem can be defined as:

Objective:

min
s̄,t̄2,SC,δ̄V ,t̄2,DC,φ̄

f (s̄, t̄2,SC, δ̄V , t̄2,DC, φ̄, P̄0, V̄0) =

4∑
i=1

Ei (29)



A. Behjat, S. Paul and S. Chowdhury / Robotics and Autonomous Systems 121 (2019) 103270 13

Table 4
Multiple UAV optimization setting.
Design variable Lower Upper

t2,SC 0 s 3 s

δVSC −Vi m/s Vmax − Vi m/s

t2,DC 0 s 3 s

φDC −
π
6 rad +

π
6 rad

s {SC, DC}

Subject to:
g1 : |Vi(t)| ≤ Vmax, ∀ t2 ≤ t ≤ t4
g2 : di,j(t) ≥ dcol, ∀ t2 ≤ t ≤ t4

∀i, j ∈ {1, . . . , 4}, i ̸= j
(30)

Design variable bounds:
si ∈ {SC, DC}

t1 ≤ t2,SC,i ≤ µ.tcol, ∈ R
−V0,i ≤ δV ,i ≤ Vmax − V0,i, ∈ R

t1 ≤ t2,DC,i ≤ µ.tcol, ∈ R
φmax ≤ φi ≤ φmax, ∈ R

∀ i ∈ {1, . . . , 4}

(31)

Table 4 lists the design variables bounds for this optimization.
Fig. 17 shows the original paths (gray dashed lines) and the

trajectory under the optimized maneuver of these 4 UAVs
(blue/red curves). It can be observed that while the original paths
led to a minimum separation of 0.31 m (thus a collision), the
optimized maneuver ensures the minimum separation between
all four UAVs stays above 3.03 m (successful collision evasion).
UAVs A, B, and C are observed to have used DC maneuvers with
different deviation angles, while UAV-D chose a SC maneuver.
The total energy consumption for all four UAVs is 1588 J (com-
pared to 1550 J under the original collision path). Therefore, it
is conceivable that if needed, the modeling and optimization-
based sampling in TRACE can be extended to multi-UAV collision
scenarios.

5.3. TRACE: Model training and testing results

The 3846 training samples and labels generated from the
corresponding optimizations are used to train the classification
model for action strategy selection, and to train the four function
approximation models for action attribute estimation. For the
maneuver initiation time attribute (t2), MLP neural networks (NN)
were chosen by COSMOS for SC and DC strategies. In contrast, for
the average change in speed, δV (an SC attribute), and effective
angular change in heading, φ (in DC), Kriging models were cho-
sen by COSMOS. The training performance of these models are
reported in Table 5. Here, the error of the classifier is given by
10-fold cross-validation, and converted into a relative error mea-
sure through scaling using the number of samples. The error of
the function approximation models (MLP and Kriging) are given
by PEMF [42], a predictive K-fold cross-validation approach. To
derive relative absolute error measures (RAE), the absolute values
of the function approximation error are normalized using the
following prescribed/observed range of these action attributes:
(i) µtcol = 3.0s for t2 in both SC and DC; (ii) 5.0 m/s for δV
in SC; and (iii) φmax = π/6 or 30◦ for φ in DC. The accuracy
estimates, reported in Table 5, are then obtained by subtract-
ing the relative error measures (expressed in %) from 100. As
seen from Table 5, both the classifier and function approxima-
tion models provide reasonable to high accuracy, based on the
cross-validation measures.

Fig. 17. Collision avoidance for 4 UAV scenario, using SC and DC maneuvers; the
UAVs are defined as A, B, C and D; gray dashed lines show the original paths;
blue and red curves respectively depict the planned and controller-executed
trajectories. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 5
Training results: Action selection (classifier) and attribute estimation (function
approx.) model accuracies.
Selection Classification model CV accuracy

SC vs. DC Ensemble bagged tree 87.6%

Attribute Func. Approx. Model CV accuracy

SC, t2 NN, 3 Hidden neurons 91.6%
SC, δV Kriging, Exp. Kernel 96.4%
DC, t2 NN, 20 Hidden neurons 94.9%
DC, φ Kriging, Linear kernels 97.4%

Table 6
Testing results: Action selection (classifier) and attribute estimation (function
approx.) model accuracies.
Selection Classification model Test accuracy

SC vs. DC Ensemble bagged Tree 87.5%

Attribute Func. Approx. Model Test accuracy

SC: t2 NN, 3 Hidden neurons 90.7%
SC: δV Kriging, Exp. Kernel 97.6%
DC: t2 NN, 20 Hidden neurons 96.2%
DC: φ Kriging, Linear kernels 94.7%

The performance of the action strategy selection (classifier)
and action attribute estimation models is also evaluated on the
test set of 425 unseen samples. In this case, the error (or con-
versely the accuracy) is computed by directly comparing the
outputs given by the trained (action strategy selection and action
attribute estimation) learning models with that derived from
running the full SC/DC action optimization on those test samples.
The testing accuracy of the models is reported in Table 6. The
same scaling and normalization approach as described earlier (for
training accuracy) is used to derive the % accuracy estimates.
Table 6 shows that the testing performance of the models is
well aligned with that predicted (via cross-validation) during
training, and the reasonable accuracy thus observed highlights
the computational effectiveness of the TRACE framework.

Further analysis of the classification performance on the test
samples is provided in Table 7. The reported mis-classification
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Fig. 18. Change in energy and minimum distance between UAVs under actions
taken by the TRACE models over the test scenarios.

rate shows that the classifier is slightly biased towards the DC
strategy, likely caused by the disproportionate number of better
outcomes given by DC across the training samples.

5.4. TRACE: Performance analysis

To analyze the physical performance of the models trained
by TRACE, we look at the two important quantities of interest
computed over the test samples. These are the change in energy
and the minimum distance of separation resulting under the
maneuvers given by the trained TRACE models. Both quantities
are computed by executing the control/dynamics simulation in
response to the actions decided by the trained TRACE models
(for each test scenario). Fig. 18 illustrates these two quantities
as boxplots computed over the 425 test scenarios. It can be seen
from Fig. 18 that the % change in energy consumption is desirably
low, with a median value less than 1%. With regards to the
minimum distance of separation between the two cooperating
UAVs, the median value is observed (from Fig. 18) to be desirably
close to 3.0 m; a small set of samples are demonstrating notably
higher separation (likely attributed to opportunistic increase in
speed to get close to the optimal operating speed of the UAV).
The failure rate, i.e., the fraction of samples failing to avoid
collision (i.e., minimum separation <1.5 m threshold) is found to
be 20/425. This rate, at ∼4.7%, remains low, and is only slightly
higher than that observed across the training samples (which had
a 3.0% failure rate).

Note that (from Fig. 18 and Table 7), a majority of the mis-
classified test samples still resulted in successful collision avoid-
ance. This is partly attributed to the safety factor of 2 used in
setting the minimum distance threshold constraints during the
optimizations that generate the model training labels.

Lastly, we measure the average decision-making time taken by
the online collision avoidance scheme trained by TRACE (Fig. 3),
when implemented on a Intel Core i7 7820HQ CPU/16 GB mem-
ory workstation. The average time was found to be 0.032 ms,
thereby demonstrating the remarkable efficiency of this
approach, and thus suitability for practical implementation on-
board UAVs with frugal computing capacities. An illustrative
example of the simulated implementation of the TRACE models
(showing the flow of information and the resulting trajectories)
is provided in Fig. 19 at the end of this paper.

6. Conclusion

In this paper, we proposed a novel cooperative collision avoid-
ance concept for quadrotor UAVs, and developed a framework
(called TRACE) to train the models implementing this concept.
Here, two approaching UAVs undertake mutually reciprocal ma-
neuvers, in terms of either change in direction (heading) or
change in speed. Important considerations, mainly seeking the
maneuver to be collectively energy optimal and the requirement
for the UAVs to come back to the original path within a given time
point, furthers the utility of the proposed concept. A supervised
learning approach was taken to train a classifier and multiple
function approximation models, that together serve as the com-
putationally lightweight decision system to be used online. The
classifier is used to select between the direction change or speed
change strategy depending upon their safety/energy-performance
combination. The function approximation models are used to pre-
dict the action parameters defining the maneuver (e.g., when to
start the maneuver and degree of change in heading). An efficient
design of experiments (DoE) was performed to generate a set
of scenarios where collisions are guaranteed, and a reasonable
coverage of potential approach situations (involving two UAVs) is
facilitated. This DoE could be useful for other researchers who aim
to take an offline learning based approach to collision avoidance
between flying robots. The classification/action model labels were
generated by running an optimization over each sample scenario
given by the DoE.

Training and testing were performed in a simulation environ-
ment, with both involving trajectory planning, and implementing
a PID controller to fly the trajectory. Over the training scenarios,
the optimized DC actions were found to be more effective over
a wider range of UAV–UAV approach angles, with the change in
energy consumption (i.e., with maneuver vs. without maneuver)
being within 2.5%. Most optimized actions expectedly identified
a maneuver initiation time very close to the collision detection
time. Ensemble bagged tree was chosen as the classifier, and
a model selection framework identified different Kriging and
Neural Network models for action prediction. The accuracy of the
classifier was found to be ∼87.5% in both training and testing, and
action models’ prediction accuracy (compared to the optimum
values) were all found to be greater than 90%, when tested
over a set of 425 unseen scenarios. These results highlight the
effectiveness of the TRACE framework in training the models that
comprise the online collision avoidance system. Further perfor-
mance analysis over the unseen scenarios resulted in a 95.3%
success rate in avoiding collisions.

While a tight time window for detection-to-collision, of only
5 s, was used in the design of experiments to conservatively
account for typical sensor range/latency capabilities, sensor noise
has not yet been taken into account. In its current form, the
TRACE framework considers only deterministic collision scenar-
ios, where pose estimation is assumed to be perfect. Accounting
for uncertainties attributed to imperfect pose estimation and
wind effects, and the possibility of in-maneuver adaptation, are
thus important next steps in this research. These, along with de-
ployment and testing on hardware platforms, would help further
establish the effectiveness of this reciprocal collision avoidance
concept. Other directions of future research that could advance
the applicability of the proposed framework include consider-
ation of non-identical UAVs and allowance of altitude change
maneuvers.
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Table 7
Results of the (simulated) online collision avoidance tests.
Collision avoidance # Tests # SC % Misclassified as SC # DC % Misclassified as DC

Successful (D ≥ 1.5m) 405/425 100/405 10% 305/405 20%
Failure (D < 1.5m) 20/425 2/20 0% 18/20 0%

Fig. 19. TRACE models in operation: showing initial pose, decisions taken by each component model of TRACE, flow of information, and resulting trajectory with
successful collision avoidance (faster UAV has longer overall trajectory).
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