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Abstract
In surrogate-based optimization (SBO), the deception issues associated with the low fidelity of the surrogate model can
be dealt with in situ model refinement that uses infill points during optimization. However, there is a lack of model
refinement methods that are both independent of the choice of surrogate model (neural networks, radial basis functions,
Kriging, etc.) and provides a methodical approach to preserve the fidelity of the search dynamics, especially in the case
of population-based heuristic optimization processes. This paper presents an adaptive model refinement (AMR) approach
to fill this important gap. Therein, the question of when to refine the surrogate model is answered by a novel hypothesis
testing concept that compares the distribution of model error and distribution of function improvement over iterations. These
distributions are respectively computed via a probabilistic cross-validation approach and by leveraging the probabilistic
improvement information uniquely afforded by population-based algorithms such as particle swarm optimization. Moreover,
the AMR method identifies the size of the batch of infill points needed for refinement. Numerical experiments performed
on multiple benchmark functions and an optimal (building energy) planning problem demonstrate AMR’s ability to preserve
computational efficiency of the SBO process while providing solutions of more attractive fidelity than those provisioned by
a standard SBO approach.

Keywords Adaptive model refinement · Surrogate-based optimization · Predictive estimation of model fidelity · Sequential
sampling · Particle swarm optimization

1 Introduction

Optimizing complex systems often involves computation-
ally expensive simulations (e.g., FEA) to evaluate system
behavior and estimate quantities of interest. While computa-
tionally efficient alternatives are often available for system
or function evaluation, for example in the form of sim-
plified analytical models, coarse grid models, or surrogate
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models (to name a few), they tend to compromise on the
fidelity of their estimations. These low-fidelity models often
mislead the search process during optimization, leading to
sub-optimal or even infeasible solutions. Variable-fidelity
optimization approaches seek to address these issues and
offer attractive trade-offs between computational efficiency
and fidelity of the optimal solutions obtained—i.e., the abil-
ity to quickly arrive at optimal solutions that can be relied
upon. In these approaches, model management strategies,
for instance, model selection, switching, and/or refinement,
adaptively integrate models with different levels of fidelity
and (computational) cost into the optimization process.

Surrogate-based optimization (SBO) constitutes one of
the most important implementations of variable-fidelity
concepts in design optimization and optimal planning.
Surrogate models or metamodels are data-driven models
that are trained using a carefully designed set of (high-
fidelity simulation) experiments, and are inexpensive to
implement once trained (Simpson et al. 2008; Jin 2011;
Fernández-Godino et al. 2016). SBO typically uses one
or more surrogate models in place of or in addition
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to physics-based models to perform objective and/or
constraint function evaluation in an optimization process.
Both interpolating-type (e.g., radial basis functions) and
regression-type (e.g., quadratic response surfaces) surrogate
modeling methods are popular in design optimization.

The reliability of the optimization search process in SBO
depends on the interplay of model uncertainty and function
improvement over iterations. Our paper presents a new SBO
approach that seeks to address the challenges associated
with characterizing and thereby regulating this interplay
through situation-adaptive refinement. Specifically, this is
accomplished in a manner in which the reliability of the
search process is preserved without compromising com-
putational efficiency. In doing so, we take a model-type-
independent approach that also exploits crucial character-
istics of population-based optimization algorithms, namely
distributed information processing and the ability to deal
with non-convex functions. These contributions extend and
build upon the concept and framework presented earlier
in our conference papers (Mehmani et al. 2015a, 2016;
Chowdhury et al. 2016).

The remaining portion of this introduction section
provides a review of model management strategies in
general, and those specific to SBO, and a summary of the
objectives of this paper.

1.1 Variable-fidelity optimization

Different model management approaches have been
reported in the literature for integrating low-fidelity mod-
els within optimization processes. One of the classical
model management strategies is that of involving Trust-
Region methods (Booker et al. 1999b; Alexandrov et al.
1999; Rodriguez et al. 2001; Marduel et al. 2006; Robin-
son et al. 2008). In these methods (Alexandrov et al. 1998),
the trust-region radius parameter is adaptively increased (or
decreased) depending on the ratio of the actual improvement
to the predicted improvement (given by the low-fidelity
model) in the objective function. Some Trust-Region meth-
ods also seek the agreement of the function and its gradi-
ent values in the low-fidelity model with those estimated
in the high-fidelity model (March et al. 2011). However,
these techniques may not be directly applicable in prob-
lems where gradients are expensive to evaluate, or where
zero-order algorithms are being used for optimization.

In another class of model management strategies,
focused on surrogate-based optimization, the accuracy
and robustness of the surrogate model are improved
during the optimization process by adding infill points
where additional evaluations of the high-fidelity model or
experiment are desired to be performed. Over the last two
decades, different surrogate-based optimization strategies

have been developed (Jones et al. 1998; Duan et al. 1992;
Kleijnen et al. 2012; Bichon et al. 2013; Moore et al. 2011).
In SBO approaches that seek to refine the surrogate model
during the optimization process, infill points are generally
added in (i) the region where the optimum is likely located
(local exploitation); (ii) the region(s) where the uncertainty
induced by the model is predicted to be high; and/or (iii)
the entire design space (global exploration) (Keane and
Nair 2005; Forrester et al. 2008; Sugiyama 2006). Infill
points can be added in a fully sequential (one-at-a-time),
or a batch sequential, manner. Various criteria exist for
determining the locations of the infill points including
(i) index-based criteria (e.g., (integrated- and maximum)
mean squared error (MSE) and maximum entropy criteria)
and (ii) distance-based criteria (e.g., Euclidean distance,
Mahalonobis distance, and weighted distance criteria)
(Jones et al. 1998; Moore et al. 2011; Keane 2006; Williams
et al. 2011; Booker et al. 1999; Audet et al. 2000; Rai 2006).

Variations of Bayesian optimization (Jones et al. 1998;
Pelikan 2005; Snoek et al. 2012; Tajbakhsh et al. 2013)
feature prominently among SBO-type model management
strategies, with efficient global optimization (EGO) (Jones
et al. 1998) being one of the most popular BO variants
in the design optimization domain. These BO variants
typically use criteria such as “expected improvement” or
“probability of improvement,” which are evaluated from a
Gaussian process model that is trained and refined in situ
during the BO process. Translating the capabilities of these
methods to SBO based on other surrogate models (instead
of GP) is challenging; however, important strides have been
made in this direction through heuristics such as importing
uncertainty measures from one surrogate model to another.
Substantial amount of work has been done in advancing the
EGO paradigm in other ways (Tajbakhsh et al. 2013; Hennig
and Schuler 2012; Viana et al. 2013), a detailed review
of which is beyond the scope of this paper. Other, more
generally applicable (w.r.t. model type) SBO methods, with
many using radial basis functions as the surrogate model,
are discussed next.

Major surrogate modeling methods that are used in
SBO include polynomial response surfaces (Jin et al.
2001), Kriging (Simpson et al. 2001; Forrester and
Keane 2009; Lulekar et al. 2018), moving least square
(Choi et al. 2001; Toropov et al. 2005), radial basis
functions (RBF) (Hardy 1971), support vector regression
(SVR) (Clarke et al. 2005), artificial neural networks
(Yegnanarayana 2004; Liu et al. 2018), and hybrid surrogate
models (Zhang et al. 2012). RBFs have seen popular
usage in various SBO implementations, which include
unconstrained local optimization (Wild et al. 2008), multi-
objective optimization (Jakobsson et al. 2010), high-
dimensional optimization (Regis and Shoemaker 2013;
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Regis 2014), and handling computationally expensive
constraints (Peng et al. 2014). Notable examples of
performing SBO with neural networks include the work
by Kourakos and Mantoglou (2009) and Yao et al. (2014).
The primary gap in these existing SBO techniques,
especially ones that provide model refinement and are
model independent in implementation, can be summarized
as follows: lack of a coherent approach to inform when
to refine (during optimization iterations) and how many
infill points to add during refinement, such that the
improvements observed during optimization remain reliable
in light of the uncertainty of the function evaluations
performed by a surrogate model. In this context, we
hypothesize that population-based optimization algorithms
uniquely provision statistical information on the degree of
improvement incurred across iterations.

Existing model management strategies used with
population-based (metaheuristics) optimization algorithms
have instead mostly focused on deciding which members
of the population should be evaluated with high-fidelity
models (individual-based evolution control), or which itera-
tion/generation of the optimization should use high-fidelity
evaluation of the entire population (a.k.a. generation-based
evolution control) (Jin et al. 2002). Graning et al. (2007)
have explored different individual-based evolution frame-
works such as (i) the Best Strategy (Jin 2005), where the
best individuals at each generation are selected as con-
trolled individuals; (ii) the Pre-Selection method (Ulmer
et al. 2004), where the offspring of the best individuals are
selected as controlled individuals and (iii) the Clustering
Technique (Jin and Sendhoff 2004), where the k-means clus-
tering technique is used to find the “controlled individual
cluster” based on the distance from the best individual.

Note that, given the statistical information on function
improvement implicit to population-based algorithms, they
offer the opportunity to establish a reliability criterion to
determine “when to refine” and “with how many infill
points”; this opportunity remains largely unexploited by
existing population-based SBO implementations. Moreover,
successful formulation of such a reliability criterion is
also contingent on our ability to capture the uncertainty
induced by the surrogate model being used for optimization.
Unfortunately, other than variants of Gaussian processes,
very few surrogate model types directly provide measures
of induced uncertainty. In this paper, we aim to address
these gaps by developing and testing a new adaptive
model refinement criterion, which leverages (1) the above-
stated opportunity provided by population-based algorithms
and (2) a relatively recent approach to quantifying the
uncertainty induced by surrogate models. The specific
objectives of this paper are summarized next.

1.2 Surrogate-based optimization with adaptive
refinement

The primary objective of this paper is to develop a
new surrogate-based optimization method with an in situ
adaptive model refinement approach that seeks to reduce the
computational cost of optimization while converging to the
optimum/optima with an acceptable level of fidelity. The
proposed SBO method is designed to have the following
characteristics:

1. Independent of the type of surrogate models (radial
basis functions, neural networks, Gaussian processes,
etc.) being used in SBO.

2. Efficiently preserves the reliability of the optimization
search process, by predicting when the surrogate
models (used for function evaluations) need to be
refined with infill points, to be performed in-between
optimization iterations (hence “in situ”).

3. Determines the optimal batch size for the infill
points, once the refinement event is triggered; this
adaptive approach is conceived to provide further
computational efficiency benefits over one-at-a-time
sequential approaches and approaches where the batch
size is a user-defined parameter (Marmin et al. 2015).

The second objective of the paper is to analyze the
performance of our new SBO method by applying it to
benchmark functions and comparing with standard SBO and
direct high-fidelity optimizations, and to demonstrate the
effectiveness of our method by applying it to a practical
optimal planning problem in the building energy domain.
Note that, with respect to the work earlier presented by us
as shorter conference papers (Mehmani et al. 2015a, 2016;
Chowdhury et al. 2016), this journal paper provides an
extended literature review (earlier in this section), and more
importantly, provides unique methodological extensions
and experimental studies. These extensions include (i)
upgraded formulations to effectively compute the number
of infill points to be added during each refinement event
and the locations of those infill points; (ii) comprehensive
parametric analysis of the new SBO method; and (iii) new
benchmark comparisons and a completely new practical
application example.

The remainder of the paper is organized as follows. The
next section presents the formulation of the novel adap-
tive model refinement (AMR) method in SBO. In addition,
Section 2 summarizes the model uncertainty quantification
method, the model refinement approach, and the optimiza-
tion algorithm used along with AMR. Section 3 presents
numerical experiments with benchmark functions to demon-
strate the benefits of the proposed AMR method, followed
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by application of AMR on a complex operations planning
problem (building thermal management) where time-
efficient decision-making is crucial. Section 5 summarizes
our concluding remarks.

2 Variable-fidelity optimization with AMR

Performing model refinement (i.e., increasing model
fidelity) too early in a SBO process can be computationally
expensive while wasting resources to explore undesirable
regions of the design domain. On the other hand, refining
the surrogate model too late might mislead the search
process early on, that is, leading to scenarios where the
global (or even more attractive, local) optimum is outside
of the region spanned by the population of candidate
solutions in later iterations. The AMR method thus seeks
to accomplish a desirable balance between “effectiveness of
the SBO search process” and its “computational efficiency.”
This approach automatically determines the in situ time
of refinement (in-between optimization iterations), and the
number and location of infill points to be added (adaptive).

Figure 1 provides a flowchart of the AMR approach,
assuming implementation in a generalized population-based
optimization process. As seen from Fig. 1, the AMR
approach can be divided into the following five major
steps:

Step 1: A set of initial sampling points are generated in
the design space using a standard design of experiments
method (Latin hypercube sampling (LHS) (McKay et al.
1979) with maximin criterion is used here). The pertinent
objective function is evaluated at these sample points
using the high-fidelity model. An initial surrogate model
is then constructed using this initial set of sample
points.

t = 1

Update Population

Yes

No Implement
AMR Metric to Refine 

Surrogate Model?

Stop

Refine Surrogate Model

No

Yes
Meet Stopping Criteria?

t = t + 1
Run one iteration of optimization to

generate new solutions

Generate Initial Sample Points

Construct Initial Surrogate Model

Quantify Fidelity of Surrogate Model

Generate Initial Population

Estimate a Desired Level of Fidelity

Estimate a Batch Size of Infill Points

Add Infill Points & Update Training Data

Reconstruct Surrogate Model

Quantify Fidelity of Surrogate Model

Step 1

Step 2

Step 3
Step 4

Step 5

Step 6

Fig. 1 Adaptive model refinement in surrogate-based optimization

Step 2: A initial population is then generated for opti-
mization (at iteration t = 1), using this surrogate model.

Step 3: At every iteration (t) of the population-based
optimization process, the current surrogate model is used
to evaluate the function values of the candidates in the
population, and then the optimization algorithm-specific
steps are conducted to update the population, before
the iteration is incremented, i.e., t = t + 1. In this
paper, particle swarm optimization (PSO) is chosen as the
optimization algorithm.

Step 4: Standard stopping criteria, namely change in
the global best compared with set tolerance values, or
maximum allowed iterations or function evaluations, are
used here. If any of the termination criteria is satisfied,
the current optimum (the best global solution in the
case of PSO) is identified as the final optimum and the
optimization process is terminated. Otherwise, we go to
Step 5.

Step 5: The AMR metric, which serves as the criterion
to decide whether to refine the surrogate model or
not, is evaluated. If the AMR metric is satisfied, a
model refinement step is invoked, and we go to Step 5.
Otherwise, we directly go back to Step 3.

Step 6: The surrogate model is refined by a series of sub-
steps, as shown on the right side in Fig. 1. These sub-steps
do the following: estimate the required number of infill
points; generate, evaluate, and use these infill points to
refine the model; and evaluate the fidelity of the refined
model. Then, we go back to Step 3.

In practice, the AMR metric (step 5) does not need
to be applied at every iteration; the user can specify that
it be applied at a prescribed interval of iterations. In the
flowchart in Fig. 1, the metric is shown to be applied at
every iteration, for the sake of simplicity. In the following
subsections, we describe the novel components of AMR:
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the AMR metric and the subsequent model refinement
strategy. Subsequently, we provide an overview of the model
error measurement technique used in AMR and the mixed-
discrete PSO algorithm, which are used to implement the
AMR method and investigate its performance.

2.1 The AMRmetric

In this paper, it is assumed that the uncertainty associated
with the surrogate model can be evaluated in the form
of an error distribution, PSM. Under this assumption, the
function values evaluated using the current surrogate model
(in the SBO process) can be related to the corresponding
high-fidelity function evaluation as:

Y = ŷSM + ε (1)

In (1), ŷSM and ε, respectively, represent the function
approximation given by the current surrogate model
and the stochastic error associated with it, and Y is
the corresponding high-fidelity function evaluation given
by high-fidelity computational simulations or physical
experiments. The relative improvement in the fitness
function value (Δf ) can be considered to follow a
distribution, Θ , over the population of solutions. Here, Δf

at any t th iteration (t ≥ 2) is given by:

Δf t
k =

∣

∣

∣

∣

∣

f t
k − f t−τ

k

f t
REF

∣

∣

∣

∣

∣

(2)

where f t
k is the function value of the local best of particle

k at the t-th iteration; and f t
REF is a reference value

used for normalization. Here, τ (∈ Z<t∗) is a user-
defined interval that regulates the frequency of “surrogate
model refinement” checks in the proposed SBO approach.
Numerical experiments exploring different values for the
parameter τ indicate that 3 ≤ τ ≤ 5 works well.

The model switching criterion in the AMR technique
is defined based on the following notion: “whether the
uncertainty associated with a surrogate model response
dominates the observed improvement in the relative
fitness function of the population.” Since most heuristic
population-based algorithms use the objective function
value of candidate designs to implement intra-population
comparisons that drive the dynamics of evolution of the
population, the above definition applies to most heuristic
algorithms. For example, in PSO, the individual local best
of each particle and the global best are both updated at each

iteration based on comparisons of the objective function
value of the solutions visited by the particles. Inexact
function evaluations are likely to make a fraction of these
comparisons incorrect. The greater the model error relative
to the comparative difference (in objective function value)
between solutions, the more unreliable are the comparisons,
and the ensuing search dynamics. Hence, our AMR metric
seeks to capture if, depending on user’s needs, a statistically
significant fraction of the population has really improved
upon their previous generation(s) in terms of objective
function value. Specifically, in the case of PSO, the AMR
metric is designed to test if at least a s fraction of the
particles in the population have registered an amount of
improvement in their individual local best (in terms of
objective function value) that is greater than the expected
maximum error measure of the best (1 − s) fraction of the
evaluations made by the surrogate model.

Since AMR is designed to work with diverse surrogate
models (RBF, ANN, SVR, etc.), as opposed to being limited
by model dependencies (such as Bayesian optimization
with GP), we need to use a generalized measure of
model error (ε) or model uncertainty (σε). Generalized
local error measures are typically unavailable. Thus, the
model switching criterion is designed using the stochastic
global measures of model error and the distribution of
solution improvement. Let’s say, based on designer’s/user’s
preferences of design needs, η is the acceptable threshold
value of error in the optimum yielded by the SBO process
(that is using a model with an error distribution PSM).
A critical probability, pcr, can then be defined as the
probability of the model error to be less than η, expressed
as:

pcr = P(ε ≤ η) =
∫ η

0
PSM(ε′) dε′ (3)

The critical probability (pcr ) indicates a critical bound in
the error distribution PSM (0 ≤ ε ≤ η). If the predefined

Fig. 2 Illustration of the AMR metric
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cutoff value (β) of the distribution of fitness function
improvement (across generations) over the population,
namely the Θ distribution, lies within this critical bound,
the current surrogate model is considered to be no more
reliable for use in the optimization process (i.e., when η ≥
β). Conversely, the surrogate model with the PSM error
distribution can be continued to be used in the optimization
process, if η ≤ β. An illustration of this second situation is
given in Fig. 2.

Now, we can formulate the AMR metric as a hypothesis
testing that is defined by a comparison between:

– The distribution of the relative fitness function improve-
ment (Θ) over the entire population, and

– The distribution of the error associated with the current
surrogate model (PSM) over the design space.

Hence, this AMR statistical test for the current surrogate
model can be stated as:

H0 : QPSM(pcr ) ≥ QΘ(1 − pcr)

H1 : QPSM(pcr ) < QΘ(1 − pcr)

0 < pcr < 1 (4)

Here,Q represents a quantile function of a distribution, with
the p-quantile, for a given distribution function, 	, being
defined as (Meeker et al. (2017)):

Q	(p) = inf{x ∈ R | p ≤ 	(c.d.f .)(x)} (5)

In (4), the critical probability, pcr , can be seen as an
Indicator of Conservativeness (IoC); in other words, the
IoC is a user-defined parameter, which regulates the trade-
off between optimal solution reliability and computational
cost in the AMR-based optimization process. Generally, the
higher the IoC (closer to 1), the higher the desired solution

reliability and the greater the computational cost; in such
cases, model switching events will occur earlier on in the
optimization process.

Figure 3a and b respectively illustrate the two scenarios,
i.e., one where the AMR metric is satisfied, and another
where it is not satisfied and in situ model refinement is
triggered. In the first scenario (Fig. 3a), QΘ > QPSM,
and thus the null hypothesis will be rejected, and the
optimization process will continue to use the current
surrogate model. This outcome can be interpreted as the
least erroneous (pcr × 100)% of the surrogate model
predictions are expected to be bounded by a maximum
error measure value that is smaller than the lower bound
of the greatest ((1 − pcr) × 100)% of the fitness
function improvements across the population. Conversely,
if QΘ < QPSM, the null hypothesis will be accepted, as
shown in Fig. 3b. In this scenario, the surrogate model will
need to be refined with infill points before the optimization
can progress further.

For evaluating the AMR metric, we need to estimate
the Θ and PSM distributions. In this paper, kernel density
estimation (KDE) is adopted to model the distribution
of the relative improvement (Θ) in the fitness function
over consecutive τ iterations, i.e., across the population
of particles in the PSO algorithm. Since the nature
of distribution of fitness function improvement over
the population is problem dependent, and is sometimes
observed to be multimodal (over our numerical experiments
with benchmark problems), the non-parametric KDE
approach is a suitable choice in this context. For modeling
the distribution of the error associated with the current
surrogate model (PSM) over the design space, we use
the log-normal distribution, based on early numerical
experiments presented in Mehmani et al. (2015). Note that
both distributions (Θ and PSM) are made to appear similar to
the shape of a log-normal distribution in the representative
Figs. 2 and 3, just for the sake of illustration aesthetics.

Fig. 3 Illustration of the AMR hypothesis test (comparing the surrogate model error distribution (PSM) and the distribution of fitness function
improvement (Θ)), that decides whether to trigger a refinement event
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The uncertainty associated with surrogate models, and
the batch size for the infill samples to be added in the
model refinement process of AMR are determined using a
surrogate model error estimation method called predictive
estimation of model fidelity (PEMF) (Mehmani et al. 2015).
The PEMF method can be perceived as a sequential
stochastic extension of the K-fold cross-validation with
the eventual measures represented in terms of an error
distribution (instead of outlier-sensitive root mean squared
measures) (Mehmani et al. 2015). Brief descriptions of KDE
and the PEMF method are provided in Appendices A and
C, respectively. Next, we describe how the PEMF method is
used to design the refinement process.

2.2 Model refinement based on PEMF

2.2.1 Determining the batch size of infill points

The PEMFmethod tracks the distribution of the (median) K-
fold error estimate with increasing K, and uses it to predict
the error of the surrogate model that uses all samples for
training. This approach in the PEMF method (Mehmani
et al. 2015) can be extrapolated to determine the batch size
of infill points to be added to the current sample set (XC),
such that it is forecasted to provide a certain level of needed
fidelity in future iterations.

The inputs and outputs of PEMF, as used in the AMR
method, can be expressed as:
[

PSMC , εCmod

]

= fPEMF

(

ŷSM, XC, yC
)

(6)

where XC and yC represent the sample data (input and
output) used for training the surrogate model. Here, PSMC

represents the distribution of the error in the surrogate model
ŷSM, with PEMF predicting the distribution over a median
value of error on different cross-validation test sets. This
probability distribution is used to perform the hypothesis
tests that determine the AMR criteria (4). The mode, εCmod ,
of the error distribution is typically considered the final error
measure provided by PEMF.

Model refinement is performed to refine the current
surrogate model such that it retains the desired fidelity for
a certain number of upcoming iterations of SBO, at the
expense of infill points added in the current iteration. The
desired fidelity, ε∗

mod , is determined using the history of the
fitness function improvement in the optimization process,
which is given by:

ε∗
mod = | Q

t=t∗
Θ

Q
t=t∗−τ
Θ

| × εC
mod (7)

The desired batch size (N Infill) is then estimated by using
the inverse of the regression functions used to represent
the variation of error with sample density in the PEMF

method (Mehmani et al. 2015). PEMF uses either a power
or exponential regression for computing the extrapolated
error measure. Based on the previously estimated “desired
fidelity” (ε∗

mod ), the batch size of infill points can be
computed for these two PEMF regression models by using
the following expressions:

N Infill =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Power:

⌈

ln(ε∗
mod )−ln(aC)

bC

⌉

− NC
s

Exponential:

⎡

⎢

⎢

⎢

e

(

ln(ε∗
mod

)−ln(aC )

bC

)
⎤

⎥

⎥

⎥

− NC
s

(8)

where NC
s represents the size of the current set of sample

points, and aC and bC are the two coefficients in the PEMF
regression functions.

2.2.2 Determining the infill point locations

Here, the location of the new infill points
(XInfill|N(XInfill) = NInfill) in the input space are determined
using two different approaches: (1)Global Hypercube: Infill
points are added within a global hypercube (�g), whose

lower bound (L�

j = Xmin
j ) and upper bound (U�

j = Xmax
j )

w.r.t. the j th dimension are respectively given by the lower
(Xmin

j ) and upper (Xmax
j ) bounds of the design space. (2)

Local Hypercube: Infill points are added within a local
hypercube (�l) that encloses promising current candidate
designs in the optimization process. The bounds of the local
hypercube are defined as L

�

j = xmin
j , and U

�

j = xmax
j ,

where, xmin
j and xmax

j are respectively the lower and the

upper bounds of the j th design variable spanned by the
current population of particles and their individual local
best. While the global infill point addition is expected to
be relatively more robust to search discrepancies attributed
to model errors (as it does not restrict model refinement to
specific regions), the local infill point addition is expected
to be greedier and thus provides faster convergence.

The optimum location of the new infill points within
the previously computed hypercube, i.e., XInfill ⊂ �, is
determined based on their distances from the current sample
points (XC). The objective of this criterion is to minimize
the design space correlation between the current and the
new points, while seeking to preserve the random uniform
distribution of samples. Thus, the infill point locations
can be computed by solving the following optimization
problem:

max
XInfill⊂�

min
xs,xt∈XActive

D(xsxt) (9)

where D denotes the Euclidean distance. XActive is the
current data set enclosed by the refinement input space
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�, and XUpdated is the updated training set that is
used to refine (reconstruct) the current surrogate model;
i.e., XActive = (XC ⊂ �) ∪ XInfill, XUpdated =
XC ∪ XInfill, and N(XUpdated) = NC

s + N Infill. An
appealing feature of this distance-based criterion is its
ease of implementation in a batch sequential manner.
However, the above approach tends to be pre-dominantly
explorative; thus, in future, approaches that adaptively
balance exploitation and exploration in adding infill samples
can be investigated. Note that, due to its model-independent
nature, the AMR method can readily use other approaches
of locating infill points, without requiring significant
modifications of the other steps in AMR.

With the batch of infill points fully determined at this
step, the expensive high-fidelity simulation/experiment is
evaluated at these infill points, and the generated samples
thereof are used to reconstruct the corresponding surrogate
model (model structure and kernel choices are kept the
same during this reconstruction process, at least for the
case studies in this paper). The PEMF method is then
called again to evaluate the fidelity of this refined surrogate
model, εmod

(

XUpdated
)

, which will be used here onwards in
the optimization process to determine the next instance of
refinement.

2.3 Optimization algorithm: Particle swarm
optimization

In this paper, AMR is implemented within an SBO pro-
cess that uses the particle swarm optimization (PSO) algo-
rithm (Kennedy and Eberhart 1995). While AMR can be in
principle used in conjunction with other population-based
optimization algorithms, PSO provides the advantage of
easy tracking of population members (namely particles, and
the fitness improvement in their local best) over iterations;
this readily translates into the distribution of improve-
ment (across iterations) used in AMR. In future, newer

formulations can be pursued to quantify the distribution of
improvement when extending the AMR technique to work
with other evolutionary optimization algorithms, such as
genetic algorithms, differential evolution (Tanabe and Fuku-
naga 2014), and covariance matrix adaptation evolution
strategy (CMA-ES) (Hansen 2006).

Specifically, we use an advanced implementation of
the PSO algorithm called mixed-discrete PSO (MDPSO),
which was developed by Chowdhury et al. (2013). The
advantages that the MDPSO algorithm provides over a
conventional PSO algorithm include the following: (i) an
ability to deal with both discrete and continuous design
variables, and (ii) an explicit diversity preservation capabi-
lity that mitigates premature stagnation of particles. Further
description of the MDPSO algorithm can be found in the
papers by Chowdhury et al. (2013) and Tong et al. (2016).

In numerical experiments with earlier versions of AMR,
we had observed that the optimization can stagnate in
regions with a local optimum, where the surrogate model
keeps getting repeatedly refined (instead refinements are
desirable closer to the region of the global optimum). To
counter this phenomena in the current implementation, after
each refinement event, we move a randomly chosen particle
(other than the global best) to the location of the infill
point (Pi ∈ XUpdated) with the best high-fidelity observation
of the objective function. This modification was found
to provide improved search dynamics in the benchmark
problems.

3 Benchmark testing of AMR

In this section, we first use an analytical benchmark
problem, the two-dimensional six-hump camel back func-
tion (Molga and Smutnicki 2005), to illustrate how the
AMR technique operates. Then, we provide a comparative
analysis using three additional popular benchmark prob-

Table 1 Case studies and problem settings

Case study Problem nd N0 Nf I termax pcr τ

Comparative analysis Six-hump camel back 2 20 30 100 0.3 2

Further benchmark analysis Branin-Hoo 2 20 30 100 0.3 2

5D Dixon-Price 5 50 150 400 0.3 2

20D Griewank 20 200 300 400 0.7 2

Parametric analysis (pcr) Six-hump camel back 2 20 30 200 0.3 2

Six-hump camel back 2 20 200 200 0.3 2

Parametric analysis (N0) Six-hump camel back 2 [15,20,25] 30 100 0.3 2

N0, initial investment (sample size); Nf , final (total) sample size; nd , dimension of the problem; pcr, critical probability (indicator of
conservativeness); τ , frequency check of surrogate model refinement
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lems (Branin-Hoo, 5D Dixon-Price, and 20D Griewank
functions) to demonstrate the effectiveness of AMR w.r.t.
standard SBO with no in situ model refinement. Addition-
ally, we perform two parametric studies to show the impact
of prescribed parameters on the performance of AMR.

3.1 Case studies and settings

Table 1 summarizes the different benchmark case studies
and their solution settings. In order to study how the AMR
technique performs in comparison with single-stage SBO-
based optimization methods, the corresponding pure high-
fidelity optimization, and how the surrogates change with
refinement (vs. the fixed surrogates), we use the six-hump
camel back function.

We solve the optimization problem using five
approaches: (1) PSO-HF: find the optimum by applying the
MDPSO algorithm on the actual high-fidelity function, and
run this 10 times; (2) PSO-AMR: generate 10 sets of N0

samples using LHS and identify the best surrogate model
(model type, kernel choice, and hyperparameter values)
using the concurrent surrogate model selection (COSMOS)
framework (Mehmani et al. 2018); solve the optimization
problem 10 times with the surrogate model corresponding
to each sample set using the new AMR technique integrated
with MDPSO, during which a total of Nf − N0 infill points
are added based on the Global Hypercubemethod; (3) PSO-
AMR-Local: similar to PSO-AMR, except it uses the Local
Hypercube method for determining the allowed region of
the infill points; (4) PSO-SBO-k1: fit surrogate models to 10
sets of Nf samples, and use them in the MDPSO algorithm
without any in situ refinements (Chowdhury et al. 2013);
again MDPSO is run 10 times w.r.t. the surrogate model
for each data set; and (5) PSO-SBO-k2: similar to PSO-
SBO-k1, except we fit to the Nf -sized data sets the same
surrogate model and kernel type that is used in PSO-AMR.
Using multiple data sets and multiple PSO runs respectively
accounts for the stochasticity of the sampling and the PSO
optimization processes. The PSO-SBO-k2 approach allows
us to demonstrate that any of the potential improvements
provided by PSO-AMR over PSO-SBO is not necessarily
attributed to the differences in fitted surrogate models. The
fitted surrogate models might be different since they are
chosen by the automated model selection method, COS-
MOS (Mehmani et al. 2018), which uses error measures to
identify the model type, kernel type, and hyperparameter
values, that best represents the data set (and the data set
is different for different sampling sizes). COSMOS makes
this choice from a list of candidates that include Kriging,
radial basis functions (RBFs), and support vector regres-
sion (SVR). For the initial comparative studies, we use the
following setting of the IoC: pcr = 0.3.

For further comparative analysis among PSO-HF, PSO-
AMR, and PSO-SBO-k1, three benchmark problems
(Branin-Hoo, 5D Dixon-Price (Dixon and Price 1989),
20D Griewank functions (Griewank 1981)) are used. The
sampling approach and multiple optimization run settings
are similar to those used for the first case study with the
six-hump problem.

Next, we perform two parametric analyses: (1) to
study the impact of the critical probability (pcr ), which
controls the trade-off between optimal solution reliability
and computational cost of the optimization process, and
(2) to study the impact of the initial investment (N0), with
the total investment remaining the same (where higher
initial/total ratio is likely to allow a better surrogate model
early on, but lower scope for targeted improvement during
the AMR-SBO process). To these ends, we analyze the
performance of PSO-AMR on the six-hump camel problem.
For the first study, PSO-AMR is run under three different
values of pcr , 0.1, 0.5, and 0.9. For this purpose, we
randomly generate 10 different sets of 20 samples each
using Latin hypercube sampling (McKay et al. 1979) with
maximin criterion; and identify the best surrogate model
using COSMOS (Mehmani et al. 2018).

Then, we develop two different case studies, one
where the total allowed investment is set at Nf = 30
and another where it is set at Nf = 200. This is to
understand if and how the choice of the critical probability
is linked with the total available sample investment. For
both cases, the PSO-AMR process is run 10 times for each
surrogate model (corresponding to each LHS) to find the
optimum. For the second study (analyzing the impact of
N0, by varying it among 15, 20, and 25), we similarly
generate 10 different samples using LHS and obtain their
corresponding surrogate models using COSMOS. We run
the AMR approach for each case 10 times, where the critical
probability is set at 0.2 (i.e., pcr = 0.2), and the maximum
investment is set at 30 samples. The population size (Npop)
and the maximum iteration (Itermax) are set at 20 and 100,
respectively. The iteration frequency of checking the AMR
metric is set at τ = 2 for both studies.

3.2 Benchmark testing: Results and discussion

3.2.1 Analyzing AMR performance in comparison with
other methods: Six-hump problem

Figure 4a shows the violin plots for each of the five meth-
ods, in terms of the high-fidelity evaluation of the objective
function at the optimum solution obtained by the methods.
These plots illustrate the statistical performance of PSO-HF,
PSO-AMR, PSO-AMR-Local, and the two baseline SBO
methods for the six-hump problem. The comparison of the
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Fig. 4 Comparative analysis study results (six-hump camel back
function): a optimization results for PSO-AMR, PSO-AMR-Local,
PSO-SBO-k1, and PSO-SBO-k2 approaches, over 100 runs each (10
different LHS and 10 runs for each LHS and SM). The numerical

values in terms of median and standard deviation for each method
are reported in Table 3; b PSO-AMR: hypothesis test that triggered
the refinement for the selected case of PSO-AMR, shown in Fig. 13b

primary statistical metrics (across 10 × 10 runs), namely
median and standard deviation, of the four methods is
provided in Table 3. As shown in Fig. 4a and Table 3, PSO-
AMR outperformed the two SBO approaches both in terms
of the median value and the variation of the results across
multiple runs. While providing a median performance simi-
lar to PSO-AMR, PSO-AMR-Local expectedly suffers from
greater variance across multiple runs. It is also observed
that PSO-AMR and PSO-SBO-k2 have at least one out-
come each that gets very close to the actual optimum. The
worst case outcome of the PSO-AMR is in the interquar-
tile range of PSO-SBO-k1 results. From Fig. 4a, note that
the results of PSO-HF, and thus of PSO itself, is near per-
fect (reaches the optimum in all runs), for the six-hump
problem. This outcome allows us to more readily attribute
the observed performance superiority of PSO-AMR to the
AMR approach itself, compared with the baseline SBO
variants.

Table 2 shows the individual best case results, out of
10 × 10 runs each of PSO-AMR, PSO-AMR-Local, PSO-
SBO-k1, and PSO-SBO-k2. Here again, the performances

of PSO-AMR and PSO-AMR-Local can be seen to be
noticeably better than that of the SBO variants w.r.t. close-
ness to the actual optimum. The best PSO-AMR optimum
is only 0.47% away from the optimum obtained by the best
case PSO-HF, while the total high-fidelity investment in
PSO-AMR is only 10% of the number of high-fidelity eval-
uations required in PSO-HF. Additional illustrative plots
for the six-hump problem are provided in Appendix F
(Fig. 13), showing the results of the best individual runs
of PSO-AMR, PSO-AMR-Local, PSO-SBO-k1, and PSO-
SBO-k2—they mainly display the difference in the true
and surrogate model estimated response surfaces (pre/post
refinement), and the corresponding convergence histories of
the optimization process.

Impact of global/local hypercube on AMR In order to
provide an insightful understanding of how the local
hypercube– and global hypercube–based infill sampling
impact the AMR performance, we select a best case run of
PSO-AMR-Local based on the smallest normal or standard
score. The z-score approach (Glantz et al. 1990) is used

Table 2 Six-hump camel back function: the optimization results for PSO-AMR, PSO-AMR-Local, PSO-SBO-k1, and PSO-SBO-k2 approaches
for the selected best case for each approach

Approach PSO-HF PSO-AMR PSO-AMR-Local PSO-SBO-k1 PSO-SBO-k2

HF objective Func. value at optimum −1.0316 −1.0268 −1.0265 −0.7612 −0.9963

RAE w.r.t. actual optimum (−1.0316) 0% 0.47% 0.49% 26.21% 3.42%

No. of HF Func. evaluations (DoE+Infill) 300 20+10 20+10 30+0 30+0

No. of SM Func. evaluations − 240 400 180 400

Selected surrogate model/kernel − Kriging Kriging Kriging Kriging

Cubic Gaussian Linear Cubic
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to select this run, which gives a measure of how far better
is each result compared with the average performance of
all results with the same initial LHS sample—this helps
in clearly attributing the performance gains to the infill
point additions. Illustration of the selected case of PSO-
AMR-Local is shown in Fig. 5b, with Fig. 5a showing the
illustration of PSO-AMR with global infill sampling for the
same case (same initial sampling and surrogate model). In
both of these figures, we show the response surface of the
true function (filled contours) and those of the surrogate
models (dashed contours); the infill points added during
the refinement event are depicted by red × symbols, and
the computed optimum solution is depicted by a green star
symbol. It can be seen from Fig. 5b that due to better
search performance of PSO, PSO-AMR-Local is able to
identify a region in the neighborhood containing the true
optimum for adding infill points; this in turn significantly
improved the accuracy of the surrogate model, and helped
achieve an optimum solution very close to the true optimum.
In contrast, PSO-AMR experienced a global improvement
in the accuracy of the model post-refinement, which did
not particularly help in getting close to the true optimum
(as seen from Fig. 5a), since the model accuracy did not
significantly improve in the neighborhood of the optimum.
Overall, this demonstrates that effective regional sampling
can significantly benefit the AMR process, while being
dependent on the performance of optimization algorithm’s
search process, which is stochastic in the case of PSO and
other heuristic algorithms. Thus, the localized or regional

sampling benefits are not guaranteed across different runs
of the same problem under the current implementation (as
seen from the violin plots in Fig. 4a). Therefore, regional
sampling approaches that are more adaptive to the status of
the PSO population w.r.t. exploitation/exploration balance is
needed in the future.

3.2.2 Case study 2: Further benchmark analyses

Figure 6 shows the results obtained using different
approaches for the three additional test problems, namely
Branin-Hoo, 5D Dixon-Price, and 20D Griewank functions.
Similar to the six-hump problem results, here the results
are again shown in terms of violin plots over the respective
multiple runs of each method. The main statistical metrics,
i.e., median and standard deviation of the computed
optimum, for these additional benchmark problems are
also summarized in Table 3. We see from Fig. 6 that the
PSO-HF approach finds the true optimum in all runs for
these problems, thus again serving in an effective role of a
benchmark to compare against.

For the Branin-Hoo problem, Fig. 6a and Table 3
show that PSO-AMR-Local outperforms the PSO-AMR
and PSO-ABO-k1 in terms of the median value and the
best optimum (that gets closest to the true optimum),
while experiencing larger variation in performance (across
multiple runs) compared with the latter two methods. In the
case of the 5D Dixon-Price problem (Fig. 6b), PSO-AMR-
Local again provides the better median value compared

Fig. 5 The results of PSO-AMR and PSO-AMR-Local for the six-
hump problem, w.r.t. the same initial sample case that gives the
best z-score for PSO-AMR-Local. The filled contour shows the true
response surface. The light blue and dark dark dashed lines represent
the initial surrogate model (1st SM) and the updated surrogate model

after refinement (2nd SM), respectively. The black dot, red cross, and
green star markers respectively depict the original sample points (same
for both), the infill points, and the computed optimum given by each
method
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Fig. 6 Optimization results for PSO-HF, PSO-AMR, PSO-AMR-
Local, and PSO-SBO-k1 approaches; a each case executed 100 times
(10 different LHS and 10 runs for each LHS and SM); b each case exe-
cuted 100 times (10 different LHS and 10 runs for this LHS and SM);

c each case executed 100 times (10 different LHS and 10 runs for each
LHS and SM). For all three cases, the numerical values in terms of
median and standard deviation for each method are reported in Table 3

with PSO-AMR and PSO-SBO-k1, with its variance also
being comparable to PSO-AMR. These observations point
to the potential of the localized sampling approach in AMR,
particularly from a median performance perspective. Lastly,
for the 5D Dixon-Price problem, it can be seen that while
the SBO results are comparable to the AMR results in terms

of the median value, PSO-SBO-k1 experiences significantly
large variance, and unlike AMR, it does not get close to the
true optimum in any run.

For the 20D Griewank problem, it can be observed
from Fig. 6c and Table 3 that PSO-AMR provides better
median performance than PSO-SBO-k1, and gets closer to

Table 3 Optimization results for PSO-HF, PSO-AMR, PSO-AMR-Local, PSO-SBO-k1, and PSO-SBO-k2 approaches: the median performance
and the standard deviation in parenthesis are given for 100 times (10 different LHS and 10 runs for each LHS)

Method Six-hump camel Branin-Hoo 5D Dixon-Price 20D Griewank

PSO-HF −1.032 (0.001) 0.398 (0.001) 0.049 (0.172) 0 (0)

PSO-AMR 0.172 (0.811) 1.251 (0.991) 1.276e3 (1.357e3) 2.505 (0.552)

PSO-AMR-Local 0.176 (9.417) 0.891 (3.361) 0.836e3 (1.578e3) 5.784 (2.595)

PSO-SBO-k1 1.170 (1.733) 1.529 (1.265) 1.287e3 (2.828e3) 3.106 (0.469)

PSO-SBO-k2 0.660 (1.095) − − −
True optimum −1.032 0.398 0 0



Adaptive in situ model refinement for surrogate-augmented population-based optimization

Fig. 7 Six-hump camel back function: analyzing the impact of critical probability (pcr ) on PSO-AMR. The red line and triangle depict the median
and mean values, respectively

the true optimum with its best run (compared with that
of PSO-SBO-k1). All surrogate-based methods noticeably
trail the performance of PSO-HF for this problem, unlike
in the lower dimensional problems; this is a persisting issue
with surrogate modeling itself, when dealing with high-
dimensional problems. In this 20D problem, PSO-AMR-
Local in particular performs poorly, since the expected
low fidelity of the surrogate tends to misdirect particles
into undesirable regions, and local refinement approach
exacerbates this issue.

For further insights on PSO-AMR’s performance on this
high-dimensional problem, we compare it with a standard
implementation of EGO.1 Here, EGO is similarly run
100 times. PSO-AMR outperforms EGO in terms of both
the median value (2.505 vs. 109.280) and the variance
(0.552 vs. 53.750) of the computed optimum. The EGO
results obtained here are well aligned with those reported
by Cheng et al. (2015), for this same 20D problem.
Given that the focus of this paper is on AMR, more

1A Matlab implementation based on Jones et al. (1998)

comprehensive comparison of PSO-AMR (which couples
PSO and AMR performance) with other multi-fidelity
optimization methods is considered to be a direction of
future work.

3.2.3 Case study 3: Parametric analysis of AMR (using
the six-hump camel function)

Impact of the critical probability (pcr) Figure 7 shows
how the prescribed critical probability (pcr) influences
the performance of AMR, under two different total (i.e.,
initial + infill) sample investments (Nf ), with the initial
investment (N0) remaining the same. When comparing the
outcomes under Nf = 30 (Fig. 7a) and Nf = 200
(Fig. 7c), it is readily evident that pcr has a more noticeable
impact on performance at sparser sample investments. The
observed higher variance in general with Nf = 30 can
be attributed to the larger variation in model accuracy
due to the significantly smaller sample size. Expectedly,
in both sample size cases, increasing the value of pcr,
which facilitates lesser compromise in fidelity, led the
refinement events to occur much earlier (as seen from
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Fig. 8 Six-hump camel back function: analyzing the impact of the initial investment (N0) on PSO-AMR. The red line and triangle depict the
median and mean values, respectively

Fig. 7b and d). As a result, even though this helps in more
aggressively preserving the fidelity of the search process
early on, the swarm soon runs out of infill points when the
total investment is capped at a smaller size (30 vs. 200).
The search process in PSO is typically more explorative
toward the start and becomes more localized later on, and
thus the opportunity to achieve higher fidelity in smaller
promising neighborhoods (i.e., close to the the optima)
is lost if the process runs out of infill points, and thus
unable to refine the objective function response in these
smaller neighborhoods—which leads to the observed drop
in performance with higher pcr when total investment is
frugal or sparse.

Impact of the initial sample investment (N0) For this
purpose, we use three different initial sample sizes (N0): 15,
20, and 25, with the total investment (Nf = 30) remaining
the same. The results obtained are shown in Fig. 8.

It can be observed that at least for the given problem,
both the median performance and the variance (both smaller

the better) improved with decreasing initial investment;
the improvement in variance being more apparent. This
observation can be attributed to the usage of greater
opportunity for refinement where required in the design
space, when PSO-AMR has more infill points available to it
(i.e., when N0/Nf is smaller). At the same time, we observe
a large variance in the timing of the first refinement event in
the case of the smallest initial investment ofN0 = 15, which
can be attributed to the likely large variance in the accuracy
of the initial SBO (across the ten LHS samples) when the
initial sample size is small.

4 Application of AMR: Building energy
management

For studying the effectiveness of AMR in more complex
optimization applications, we use a building thermal
management problem, which involves optimal planning of
temperature settings for a large office building, with the

Fig. 9 Large office building problem: input and output in the high-fidelity simulation using EnergyPlus
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objective to minimize energy consumption attributed to
cooling loads. Further description of the problem, results of
AMR application on it, and comparisons with high-fidelity
optimization and standard SBO are presented in this section.

4.1 Electricity demand for cooling a large office
building

This problem is based on a representative 12-floor building
that utilizes an HVAC system for cooling during the summer
season. An illustration of the problem is given in Fig. 9.
The problem is defined as finding the temperature set point
profile from 4 am to 8 pm on a typical hot summer day, such
that it minimizes (1) the electricity demand for the cooling
system of the building and (2) the indoor temperature
deviation from a fixed comfortable temperature reference
(here, set at 24◦C). The day-temperature set point profile is
defined using a step function (see Fig. 9), which is updated
through a 16-element set point vector, essentially the hourly
temperature set points (T = [T1, T2, ..., T16]) between
4 am and 8 pm. Hence, the optimal planning problem can
be defined as:

min
T

f = c1E (T) + c2

16
∑

j=1

|Tj − 24| (10)

where, T = [T1, T2, . . . , T16] and E(.) are the hourly
temperature set point profile and the hourly averaged
energy consumption over the studied daily 16-h period,
respectively. The coefficients c1 = 106, 300 and c2 =
3, 130 are used for scaling the two terms in order to allow a
reasonable single-objective formulation. Although the PSO
algorithm used here can solve multi-objective problems
(Tong et al. 2016) and AMR can in principle be expanded
to multi-objective implementations, such explorations are
outside of the scope of this paper. For solving this
optimization problem, we require a model to predict the
HVAC load (E(.)). In this paper, as illustrated in Fig. 9,
the EnergyPlus (v8.9) building energy simulation software
is used to estimate the average 30-min interval cooling
electricity load in a prototypical large office building. The
original office building model was developed in Deru et al.
(2011) and DOE (2017), and modified here based on
the typical meteorological conditions for New York City
(New York-Central Park 725033 (TMY3)). This model is
popularly used for research in computational methods for
building energy prediction and operations planning (Tyler
and Zhang 2015; Chen and Hong 2018).

The execution time for a single EnergyPlus simulation
of this building is observed to be ≈ 60 s on a
2.4 GHz Intel Xeon 6148 CPU / 200 GB RAM high-
performance workstation. Using such simulations as a
part of an optimization process (that could require 100–
1000 s of evaluation) is computationally prohibitive in the
context of near real-time (or even hour-ahead) planning,
which is required for applications such as thermostat
automation (Corbin et al. 2013; Sharif and Hammad
2019) and effectively dispatching distributed energy storage
in buildings that are subject to demand-based electricity
tariffs (Sun et al. 2018; Wang et al. 2018; Ghassemi et al.
2017). Hence, the SBO techniques are popular substitutes
for such computationally expensive simulations in the
building energy management domain (Tian 2013; Ascione
et al. 2017; Chen et al. 2017). With a typical surrogate
model’s (e.g., ANN’s, GP’s, or RBF’s) nearly ten orders of
magnitude smaller computing time footprint compared with
the EnergyPlus simulation model (when simulating a 1-
day period), a typical SBO approach can facilitate tractable
decision-making toward optimal HVAC operations.

4.2 Building cooling planning problem: Results
and discussion

Here, we again use COSMOS (Mehmani et al. 2018)
to select the surrogate model for the building cooling
problem, where the input to the surrogate model is the
16-dimensional temperature profile (T) and the output is
the hourly averaged energy consumption over a whole day
(E). In this problem, for the SBO implementations, a total
of 320 high-fidelity samples (evaluated using EnergyPlus)
are used. The prescribed settings used in COSMOS and in
the MDPSO algorithm for this problem are summarized in
Appendix C.

For comparative analysis, we consider three different
implementations: (1) PSO-AMR: performing the new AMR
based SBO implemented with MDPSO, where 160 points
are used to build the initial surrogate model and another 160
are added in batches for refinement during the optimization
process; (2) PSO-SBO: performing standard surrogate-
based optimization with MDPSO, where 320 samples are
used to build the surrogate model that is then used to
perform the optimization; and (3) PSO-HF: high-fidelity
optimization with MDPSO, where function evaluations are
performed directly using the EnergyPlus simulations. For
the PSO-AMR, we use the following settings: τ = 3, pcr =
0.1, itermax = 200.

Figure 10a–c show the convergence histories (solid lines)
and the PEMF-derived model error (dashed lines), where
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pertinent, during the three different types of optimizations.
The line color changes after each refinement event in
the case of the PSO-AMR plot (Fig. 10a). The relatively
higher number of iterations required by PSO-AMR to
converge can be attributed to the typical re-shuffling of
particles’ (individual best) ranks that occur after each
refinement event, which re-organizes the search dynamics.
As shown in Fig. 10a, the AMR technique adaptively refined
the surrogate model three times during the optimization
process, namely at the 15th, 24th, and 33rd iterations, by
adding batches of 57, 65, and 38 infill points, respectively.
The global error in the surrogate model subsequently
decreased from 5.1 to 4.7%. In contrast, the global error
in the surrogate model remains at ∼4.9% in the case
of the PSO-SBO approach, which uses a fixed surrogate
model. Significant improvement in the objective function is
observable in the case of all three optimization processes;
however, note that the displayed convergence histories
for the PSO-AMR and PSO-SBO approaches relate to
surrogate-based function values, while that of PSO-HF
relate to actual simulations, and thus direct comparison of
the quality of the optimum is better judged by evaluating all
the three optimized designs with high-fidelity EnergyPlus
simulations, which is discussed later.

Figure 11a shows the optimized temperature set points
given by the three approaches. It can be observed that,
compared with the optimized temperature set points

obtained by PSO-SBO, those given by the new PSO-
AMR are relatively much closer to the optimized set points
resulting from PSO-HF—with the median and maximum
deviations being 0.13 ◦C and 0.7 ◦C, respectively. The
nature of the AMR- or HF-optimized set point profile
is intuitively reasonable given the typical daily outdoor
weather patterns of cooler mornings and warmer afternoons;
thus, a minor compromise in comfort by setting the
temperature at slightly higher than 24 ◦C (i.e., closer to
outdoor conditions) yields significant energy savings.

Here, the objective function value is a combination of two
terms with different units and physical meanings. Thus, to
allow a more intuitive comparison of results, we introduce
a metric that provides a normalized understanding of the
performance improvement, compared with a baseline—a
Naive approach where the set point temperatures are all
fixed at 24 ◦C. This metric is defined as:

Q = 100 × f ∗
Naive − f ∗

K

f ∗
Naive − f ∗

HF
(11)

where f ∗
HF and f ∗

K are the optimum obtained by PSO-
HF and an approach K ∈ {PSO-SBO,PSO-AMR}, both
estimated using high-fidelity simulations. Here, f ∗

Naive is
the objective function value corresponding to the Naive
approach. This metric thus measures how close approach K

Fig. 10 Building cooling problem: convergence history and results of
the three optimizations. The solid line shows the objective function
(estimated value using surrogate model approximations, in (a) and
(b), and the actual value in (c)). The dashed line with triangle marker

represents the relative error of the surrogate model, which is esti-
mated using PEMF. The dashed red line with square marker shows the
cumulative number of high-fidelity function evaluations
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Fig. 11 Building cooling problem: results of the three optimizations

can get to the performance of the high-fidelity optimization,
with 100% meaning a perfect match.

Table 4 provides a summary of the comparative results,
including the Q-metric, the computed optimum objective
function value, the actual objective function value at
optimum given by the high-fidelity simulation, the relative
error in the computed vs. actual optimum values, the cost of
optimization in terms of number of high-fidelity simulation
calls, and the number of surrogate model calls. It can be seen
from Table 4 that compared with PSO-SBO (Q = 55.22%),
the optimum solution given by the new PSO-AMR (Q =
89.55%) is significantly closer in performance to PSO-HF.
The closeness of the actual objective function values at
optimum as given by PSO-AMR and PSO-HF (1026.1 vs.
1024.7) further corroborates this observation. Thus, in terms
of accuracy, PSO-AMR clearly outperforms PSO-SBO for
this building cooling problem.

Table 4 shows that, as expected, a majority of function
evaluations in both surrogate-based optimizations (PSO-
SBO and PSO-AMR) are done using the current surrogate
model. More importantly, PSO-HF requires 7680 high-
fidelity function calls (EnergyPlus simulations), compared

with the the total of 320 simulations used by PSO-SBO
and PSO-AMR methods (for constructing and refining the
surrogate). On the workstation used for this case study,
this translated into a computing time of ≈ 6.5 h for PSO-
AMR (including generation of initial samples, constructing
the initial model, and running PSO-AMR with the in situ
sample generation and model refinements), whereas PSO-
HF required a computing time of ≈ 132 h (i.e., 5.5 days).
The observed 20-fold computational time savings (over
pure HF optimization), when taken in the context of the
accuracy of the optimum solution obtained by PSO-AMR
and the attractive fidelity of the SM estimation at the
optimum (only 0.02% error), demonstrates the effectiveness
of the AMRmethod in balancing fidelity and computational
efficiency.

5 Conclusion

In this paper, we presented a new surrogate-based optimiza-
tion (SBO) approach called adaptive model refinement or
AMR, which seeks to preserve the reliability of the search

Table 4 Optimal set point planning in cooling a large office building: results using the AMR, the standard surrogate-based optimization (SBO),
and the purely high-fidelity (HF) optimization methods

Approach PSO-AMR PSO-SBO PSO-HF Naive

Q (Eq. 11) 89.55% 55.22% 100% 0%

Computed optimum objective value (f ∗) 1026.29 1019.49 1024.70 −
Actual objective value at optimum (HF estimation, f ∗

HF ) 1026.10 1038.10 1024.70 2076.20

Relative absolute error (100(f ∗ − f ∗
HF )/f ∗

HF ) 0.02% 1.79% 0% −
Number of HF function evaluations (DoE+Infill) 160+160 320+0 14,720+0 1+0

Number of SM function evaluations 17,280 6,880 0 0

Selected surrogate model/kernel Kriging Kriging — —

Exponential Exponential

Here, f ∗
HF represents the HF estimation of the objective function value at the optimum obtained by the corresponding optimization method (given

by the column heading)
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process during optimization without compromising com-
putational efficiency. The AMR approach can work with
any major types of surrogate models (e.g., RBF, Kriging,
and ANNs), and seeks to exploit the following information
available in a population-based (e.g., PSO-based) optimiza-
tion process: (i) stochastic measure of improvement of the
population’s fitness across generations, and (ii) regions of
interest in the design space based on the population dis-
tribution at any given iteration. The AMR method devises
and uses a hypothesis testing to determine when to add
infill points to refine the model, in situ optimization. A pre-
dictive sequential cross-validation approach called PEMF
is used to perform the hypothesis testing as well as to
compute the number of infill points needed at each refine-
ment event. For investigating the effectiveness of the AMR
technique, we tested it on three benchmark problems (run
multiple times to account for the effect of sampling and
PSO’s stochasticity) and a more complex practical appli-
cation (optimizing the temperature set points for cooling a
building). In the benchmark problems, AMR readily out-
performed standard one-step SBO implementations, both in
terms of the median value and the variance of the opti-
mum over multiple runs. Further analysis with one of the
benchmark problems (the camel function) demonstrated the
role that the adaptive refinement process played in enabling
greater response accuracy when and where needed. Para-
metric analyses with regard to the critical probability and
the initial investment showed that the former has a notable
impact on performance for sparse data sets, while increas-
ing the initial investment (the total investment remaining the
same) had a detrimental impact, likely due to the associated
reduction in opportunities to add infill points.

The application problem was defined as finding the
hourly optimal temperature set points (from 4am to
8pm) that minimizes the electricity consumption for the
cooling system of a prototypical building in NY City
and the deviation from a defined comfortable indoor
temperature. High-fidelity samples were given by the state-
of-the-art EnergyPlus simulations. A purely high-fidelity
optimization (run until a convergence criterion is met)
and standard one-step SBO was performed along with
AMR for comparison (with the latter two using the same
total number of high-fidelity samples). While the optimum
objective function yielded by the SBO approach deviated
by 45% from the solutions obtained by the high-fidelity
optimization, corresponding AMR outcomes got within
∼10% of the high-fidelity solutions. This observation was
further corroborated by the optimized hourly set point
profile given by AMR being noticeably closer to that of the
high-fidelity optimum, in comparison with that given by the
standard SBO approach. In addition, AMR allowed a 20-

fold reduction in computing time compared with the purely
high-fidelity optimization. Overall, both the benchmark
analyses and the application problem outcomes provided
promising evidence of AMR’s advantage over standard
surrogate-based optimization, by virtue of the former’s
ability to adapt sample investments to the needs of the
optimization search process.

An existing simplicity in the current AMR method is the
explorative distance-based criterion and choice of design
space bounds to determine the location of infill points at
each refinement event, which in future can be replaced
with a method that better balances exploration/exploitation
trade-offs. A corollary direction of future investigation
would be a comparison of this advanced AMR-PSO
integration (with adaptive placement of infill points) with
state-of-the-art multi-fidelity optimization methods such
as efficient global optimization. In addition, while PSO
allows tracking of the history of individual particles
and thus their fitness improvement, other meta-heuristics
such as evolutionary algorithms make it challenging to
track individual improvement due to substantial mixing of
candidate traits over generations (due to a backward tree-
like heritage structure). Therefore, it would be useful to
develop additional integration of AMR in the future, where
it can work with evolutionary algorithms such as GA, DE,
and CMA-ES. Other potential directions of extending the
benefits of AMR include incorporation of samples from
physics-based models of varying fidelity and application to
multi-objective search processes.
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Appendix A: Kernel density estimation (KDE)

KDE is a non-parametric model to estimate the probability
density function of random variables. Here, it is assumed
that Δf = (Δf1, Δf2, ..., ΔfNpop) is an independent and
identically distributed sample drawn from a distribution

https://github.com/adamslab-ub/amr-samples-metamodels-package
https://github.com/adamslab-ub/amr-samples-metamodels-package
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with an unknown density ΘΔf . The kernel density
estimator can then be used to determine ΘΔf , as given
by:

Θ̂Δf (x; H) = 1

Npop

Npop
∑

i=1

KH (x − xi) (12)

Here, the kernel K(x) is a symmetric probability density
function,H is the bandwidth matrix which is symmetric and
positive-definite, and KH (x) = |H |−1/2K(H−1/2x). The
choice ofK is not as crucial as the choice of theH estimator
for the accuracy of the KDE (Epanechnikov 1969). In this
article, we consider K(x) = (2π)−d/2 exp(−0.5xT x), the
standard normal throughout. The mean integrated squared
error (MISE) method is used as a criterion for selecting
the bandwidth matrix H (Duong and Hazelton 2003) as
follows:

MISE(H) = E

[

∫

(

ΘΔf (x; H) − Θ̂Δf (x; H)
)2]

(13)

Appendix B: Particle SwarmOptimization

Particle swarm optimization (PSO) is a population-based
optimization method introduced by Kennedy and Eberhart
(1995). In this method, each particle’s movement is
described in terms of its velocity (vi (t)) and its location
(xi (t)), where i denotes the ith particle and t denotes the
t th iteration. Here, we specifically exploit the MDPSO
algorithm developed by Chowdhury et al. (2013), which
includes explicit diversity preservation in addition to
the standard PSO dynamics, in order to provide greater
robustness. In MDPSO, the velocity and location of
particles are updated as follows:

xi (t + 1) = xi (t) + vi (t + 1) (14)
vi (t + 1) = ωvi (t) + r1C1(Pl

i (t) − xi (t))

+r2C2(Pg(t) − xi (t)) + r3γcν̂i(t) (15)

Here, xi (t) and vi (t) respectively denote the position
and the velocity of particle i at the t th iteration; ω,
C1, and C2 represent the inertial weight, the individual
search, and the global search coefficients, respectively;
these are used to balance the local search (exploitation)
and the global search (exploration); Pl

i (t) is the local
leader of particle i at the t th iteration, which represents
the best local solution found in the motion history of
particle i; Pg(t) is the global leader of the entire swarm
at the t th iteration, which is determined by comparing the
local leaders of all particles; γc is the coefficient used to
weigh the explicit diversity preservation component; ν̂i (t)

is the explicit diversity preservation vector; and r1, r2, and
r3 are random real numbers between 0 and 1.

Appendix C: Predictive estimation of model
fidelity

Predictive estimation of model fidelity (PEMF) method
(Mehmani et al. 2015) can be perceived as a novel
sequential implementation of k-fold cross-validation, with
carefully constructed error measures that are significantly
less sensitive to outliers and the DoE (compared with mean
or root mean square error measures). The PEMF method
predicts the error by capturing the variation of the surrogate
model error with an increasing density of training points
(without investing any additional test points). Algorithm 1
summarizes the PEMF method.
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Appendix D: The settings of COSMOS
andMDPSO

Table 5 The COSMOS and MDPSO settings for the analytical
problem and application problem

Parameter Value

PEMF Error type Median

Normalization mode Actual value

Error type Median

No. of permutations (Mt ) 300

No. of training points �max(0.05Ns, 3)
per Iter. (nt )

No. of iterations (Nit) 4

COSMOS Model type ‘Kriging,’ ‘RBF,’ ‘SVR’

Kernel choices ‘Gaussian,’ ‘Linear,’

for Kriging ‘Exponential,’ ‘Cubic,’

‘Spherical’

Kernel choices for RBF ‘Linear,’ ‘Cubic,’ ‘Tps’

Kernel choices for SVR ’Linear,’ ‘RBF’

MDPSO Max. Iter. Itermax

Population size (Npop) 10nd

Allowed number Itermax × Npop

of function calls

γc0 2

γmin 1.0e−05

λh 0.1

ω 0.5

C1(βl) 1.4

C2(βg) 1.4

Nter 5

Appendix E: Description of six-hump camel
back function

Figure 12 shows the six-hump camel back function, a
well-known 2D test function used for benchmarking global
optimization and surrogate modeling methods (Molga and
Smutnicki 2005). It has six local minima, with two of
them being the global minima (Molga and Smutnicki 2005).
The global minima are located at (−0.0898, 0.7126) and

(0.0898, −0.7126), and gives a minimum function value of
f (x∗) = −1.0316.

f (x1, x2) =
(

x4
1

3
− 2.1x2

1 + 4

)

x2
1 + x1x2 + 4

(

x2
2 − 1

)

x2
2 (16)

where −3 ≤ x1 ≤ 3 and −2 ≤ x2 ≤ 2.

Appendix F: Further performance
illustration on the six-hump problem

Fig. 12 The response surface of the six-hump camel back function

The following illustrations in Fig. 13 respectively
represent the best individual run of PSO-AMR, PSO-AMR-
Local, PSO-SBO-k1, and PSO-SBO-k2.
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Fig. 13 The selected best run of each optimization approach, for
the six-hump camel back function. Left figures show filled contours
and dashed line contours, respectively, representing the true function
and the surrogate model (SM) approximation; in the PSO-AMR and

PSO-AMR-Local cases, there are two SM contours, corresponding
to the models before and after refinement. Right figures show the
convergence and SM error histories over the optimization processes
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