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This paper presents a physics-aware surrogate-based approach (aka PhySBO) for com-
putationally efficient optimization of complex systems. This approach is founded on a new
hybrid model. This hybrid model combines partial physics and Gaussian process models
in a specialized manner that facilitates more generalizable output predictions compared to
pure data-driven models (aka surrogate models) and standard low-fidelity-physics/surrogate
ensemble models. More specifically, this hybrid modeling approach called OPTMA exploits
the potential relationship between the inputs to the partial physics model and the inputs to the
full physics model, where this relationship is mapped by a transfer Gaussian process model
(GP). The PhySBO method is applied to design surface riblets for bio-inspired passive flow
tailoring, where costly CFD simulations are needed to gather high-fidelity samples. In this
case, a potential flow solver acting on a 2D airfoil is used as the partial physics model. Here the
transfer GP model transforms the inputs from the geometric riblet features on the original 3D
ribleted NACA airfoil to geometric and incoming-flow features for the partial physics model.
The OPTMA model is estimated to provide 105 times reduction in computing time. Results
show the proposed hybrid model is twice as accurate and robust (when tested on unseen sam-
ples) compared to a pure data-driven model, when the number of training samples is small and
the training and test samples come from different distribution. This shows the generalizability
capacity of the OPTMA architecture (the median of error is ∼0.5%). Based on the OPTMA
(hybrid) model, the PhySBO framework is able to converge upon an optimum design with sub-
stantial computational efficiency, while providing an optimum that is validated to be 99.73%
accurate w.r.t. corresponding high-fidelity estimate.

I. Introduction

A. Physics-Aware Surrogate-based Optimization
Optimizing complex systems often involves computationally expensive simulations (e.g., CFD) to evaluate system

behavior and estimate quantities of interest. In many cases, using high-fidelity models or "full physics" simulations in
optimization are infeasible, especially in time-sensitive usage contexts like online planning. While surrogate models and
surrogate-based optimization [1–4] provides a tractable alternative, in their native form they tend to compromise on the
fidelity of the optimization process. In general, purely data-driven low-fidelity surrogate models shows low performance
in generalizing and extrapolating [5, 6] - specifically, when the training dataset is limited [7]. More importantly, they do
not implicitly guarantee adherence to even basic physics laws guiding the system under study. Due to these inaccuracies,
purely data-driven surrogate models often mislead the search process during optimization, leading to sub-optimal or even
infeasible solutions. Hybrid modeling architectures (or tuned fidelity modelings) have been proposed to overcome to
these aforementioned issues by combining computationally inexpensive partial physics models with purely data-driven
models have been proposed to address the aforementioned issues [8, 9]. However, the existing hybrid modeling
architectures do not fully address these issues. In this paper, we present a physics-aware surrogate-based optimization
(PhySBO) method by integrating a physics-aware surrogate model and a particle swarm optimization algorithm [10],
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allowing a fast and reliable optimization. The physics-aware surrogate model is defined as a combination of a surrogate
model like an artificial neural network (ANN) or Gaussian Process (GP) and a computationally inexpensive partial
physics model to evaluate the design variables. This new PhySBO is used to design ribleted 3D airfoil surfaces for
bio-inspired flow tailoring. The remaining portion of this introduction section provides a review of physics-aware hybrid
modeling, and converges on the objectives of this paper.

B. Physics-Aware Hybrid Modeling
Data-driven surrogate models are commonly used to provide a tractable and inexpensive approximation of the

actual system response in engineering analysis and design activities, e.g., domain exploration, sensitivity analysis,
development of empirical models, and optimization. One of the most popular classes of approximation models are
surrogate models or metamodels [11], which are purely data-driven models, and are not directly derived from the physics
of the system being modeled. Major surrogate modeling methods include polynomial response surfaces [12], Kriging
[13, 14], moving least square [15, 16], radial basis functions (RBF) [17], support vector regression (SVR) [18], and
artificial neural networks [19]. The data-driven models are frequently shown to provide competitive predictions [20–22].
However, as mentioned earlier, the purely data-driven models are poor at generalizing and extrapolating [5, 6]. In
addition, they are very likely to predict a system response which is not aligned with physics laws of the actual system.
For addressing these issues, some studies proposed of hybrid modeling architectures (or tuned fidelity models) to
combine a computationally-inexpensive partial physics models with purely data-driven models [8, 9].

The hybrid architectures can be classified into two major sub-architectures [23], namely: parallel [23–25], and serial
sub-architectures [26–28]. In the parallel sub-architectures, the partial physics model and the pure Data-Driven model
receive same inputs and independently predict the system response, then their outputs are fused together to form the
final outputs. There exist three main concerns regarding this class of hybrid models. First of all, if the exact point-wise
correlation between the partial physics and full physics outputs is weak, the hybrid model is unreliable. Secondly, the
parallel hybrid models do not readily facilitate implicit physics adherence characteristics due to the additive nature
of the fusion approach. Lastly, the partial physics model, in spite of being computationally frugal, is under-exploited
during the training process in most of the existing parallel hybrid models – often only is evaluated w.r.t. the inputs in the
sparse full physics sample data. In the second class of hybrid modeling sub-architectures (i.e., serial sub-architectures),
two types of arrangement are considered: 1) the data-driven model is cascaded with the partial physics model [26–28];
and 2) the data-driven model is utilized to tune the parameters of the partial physics model [23–25]. In the former
approach, the fundamental justification for sequential interaction (e.g., treating partial physics model as an input to
the data-driven model) is missing. The latter approach is often limited to parametric deviation contexts, where with a
bounded parameter estimation, basic physics laws (e.g., conservation properties) can be expected to be followed in the
final predictions.

In this paper, we propose a new hybrid modeling architecture based on a novel input-transfer concept, so-called
Opportunistic Physics-mining Transfer Mapping Architecture (OPTMA). Our proposed model, similar to some serial
hybrid models, guarantees physical law adherence prediction by virtue of using the partial physics model. In addition,
we use a Gaussian process model for the transfer mapping model. Offline training of this transfer model can more
effectively exploit the computationally-frugal partial physics model than typical serial or parallel hybrid architectures.

C. Objectives of this Paper
The primary objectives and associated contributions of this paper are given below:
1) Integrate, into particle swarm optimization, a physics-aware surrogate (hybrid) modeling that provides a reliable,

physical law adherence prediction in a tractable manner. The central contribution lies in the ability (thus enabled)
to estimate a system response using a computationally low cost partial physics model with high accuracy and
reliability in the PhySBO framework.

2) Test and compare the proposed physics-aware hybrid modeling method, with standard surrogate modeling
method.

3) Apply the new PhySBO method to perform optimization of bio-inspired surface riblets on 3D airfoil sections, to
achieve maximum drag reduction. This objective lends itself to the practical contribution of this paper – namely
provisions evidence of the effectiveness of the PhySBO method is solving complex optimization problems.

The remainder of the paper is structured as follows. The next section provides an overview of the Physics-aware
surrogate-based optimization method, followed by a detailed description of the new hybrid modeling. For studying the
effectiveness of the proposed algorithm, a CFD-based problem which is computationally very expensive to simulate is
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considered. Section III describes the automated riblet design framework and its optimization formulation, and discusses
the results. Finally, concluding remarks are given at the end.

II. Physics-aware Surrogate-based Optimization

A. Overview of the PhySBO Framework
In this section, we introduce Physics-aware surrogate-based optimization (PhySBO), which is a particle-based

optimization that uses a physics-aware hybrid model during the optimization process to estimate the system response.
Our proposed hybrid model is a computationally inexpensive alternative to high-fidelity (or "full physics") model in
many applications (especially in time-sensitive applications), where using high-fidelity inside the optimization is not
applicable. In addition, the proposed physics-aware hybrid model is more reliable than purely data-driven models;
although they show competitive accurate predictions, they are not aware of the law of physics and they are prone to
predict a value which is not adherence to physics laws guiding the system. This issue might mislead the search process
and generate an infeasible solution. The implementation of the proposed PhySBO involves the six steps, which are
illustrated within the PhySBO flowchart shown in Fig. 1. These six steps can be summarized as:

Generate Initial Samples
(Constrained LHS)

Generate Data

Construct & Train Hybrid Model (OPTMA)

Generate Initial Population

Update Population

Term.
Criteria

Hybrid Model (OPTMA)

High-fidelity Model
(e.g., OpenFOAM) Transfer Model (GP)

Partial Physics Model 
(e.g., XFOIL)End

Transferred 
Design Variables

Predicted Output

Design Variables

No Yes

t = 1

t = t+1

Transfer Model (GP)

Partial Physics Model 
(e.g., XFOIL)

High-fidelity Model
(e.g., OpenFOAM)

𝐸𝑇

𝑋𝑡𝑟
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2

3

4

5

6

Fig. 1 Physics-aware surrogate-based optimization

Step 1 A set of initial sampling points are generated in the design space using a maximin Latin hypercube sampling
(maximin LHS) [29, 30].
Step 2 The system response is calculated by running high-fidelity (full physics) model.
Step 3 Physics-aware hybrid model is constructed and trained. Further details will be given in Subsection II.B.
Step 4 Initial population is generated at C = 1, using the trained hybrid model.
Step 5 At every iteration (C) of the heuristic optimization algorithm, the trained hybrid model is used to update the
function values of the population, and then set C = C + 1. In this paper, particle swarm optimization is the chosen
optimization algorithm.
Step 6 The stopping criterion is checked. The following two different methods can be used as the termination
criteria: (i) the difference between optimum values of five consecutive iterations is less than a threshold value, and
(ii) the maximum allowed number of evaluations of function is reached. If the termination criterion is satisfied, the
current optimum (the best global solution in case of PSO) is identified as the final optimum and the optimization
process is terminated. Otherwise, go to Step 5.

In the next subsection, we talk in details about Step 3 and then briefly describe Step 5.

B. Physics-aware Hybrid Modeling: OPTMA
In this paper, we propose a new input-transfer concept called the Opportunistic Physics-mining Transfer Mapping

Architecture (OPTMA). OPTMA is designed on the premise that if the outputs are continuous and bounded for both
the partial and full physics, any linearly scaled output value given by the full physics can be produced by the partial
physics model, albeit not necessarily in response to the same input vector. With this premise, we conceive the model
construction problem to reduce to identifying the transfer mapping between the real input space and a modified input
space such that the prediction of the partial physics model operating on the modified input is optimally close to the full
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physics output given by physical experiments or computationally-expensive simulations. This transfer mapping function
is hypothesized to be more generalizable than a supervised direct mapping network when input-input correlations are
stronger and simpler compared to output-output relations between the partial and full physics. The transfer mapping can
be accomplished using multi-input-multi-output (MIMO) models (e.g., neural network and Gaussian process). Figure 2
shows how the partial physics model can be perceived as a node in both a neural network (NN)-based sequential hybrid
architectures and our OPTMA architecture, and how differently they incorporate the partial physics model. In the
next subsections, we first define the transfer mapping model, then we elaborate the training process of the OPTMA
architecture.

Sequential HybridOPTMA

𝑓PP

𝑓PP

Inputs

Transferred 
Inputs

Outputs

Fig. 2 OPTMA and Sequential Hybrid architectures; here neural network is used as a representative surrogate
model; in practice, this could be of other type, e.g., a Gaussian Process model.

C. Definition of Transfer Model
Figure 3 shows the training process of the OPTMA architecture (part (I)), and how the prediction is achieved (part

(II)). As shown in this figure, the transfer model ("̄) ), the main component of the OPTMA architecture, is mapping
input features (-) to transferred inputs (j) ); i.e., "̄) : - → j) . Then, the transferred inputs are fed into the partial
physics model ( 5PP (j) )) to generate final outputs (.) ). An ideal transfer model maps the transferred inputs for the
partial physics model such that the partial physics model generates the actual outputs (i.e., .) = .�%). Here, the ground
truth, .�% , is the output of the full physics w.r.t. the original input and the estimated output, .) , is the output of the
partial physics w.r.t. the corresponding transferred input.

Fig. 3 OPTMA: (I) Training Process, (II) Application
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D. Optimization Algorithm: Particle Swarm Optimization
In this paper, we use an advanced implementation of the PSO algorithm called mixed-discrete PSO (MDPSO),

developed by [31]. Unlike the standard PSO algorithm [32], MDPSO provides: (i) an explicit diversity preservation
capability that mitigates the possibility of premature stagnation of particles, and (ii) an ability to deal with both discrete
and continuous design variables. MDPSO has been used to solve a wide variety of highly non-convex (often multimodal)
mixed-integer nonlinear programming problems in wind farm design [33] and design of unmanned aerial vehicles [34].
Further description of the MDPSO algorithm can be found in the following paper [31].

III. Application of PhySBO: Optimization of Riblet-based Flow Tailoring

A. Riblet-based Flow Tailoring
Lulekar et al. [35, 36] presented a new approach to represent and optimize surface riblets inspired by passive surface

features observed in marine animals, for the purpose of reducing drag coefficients. It has been shown in [35] that it
is essential to have an automated riblet design framework to be able to find the optimal design of the riblets for a 3D
airfoil. In this riblet-design framework, we are is using a set of open-source tools for running full physics RANS CFD
simulation, where each run needs approximately 16 hours of computational time, executed on the UB CCR academic
clusters using 2 compute nodes with Intel Xeon Processor E5-2660 (25M Cache, 2.20GHz), 16 cores per node, and
48GB RAM, indicating the expense of one single CFD simulation. The computational cost is significant and it is
necessary to overcome this computational cost by minimizing the number of high-fidelity evaluations. For this purpose,
we use PhySBO, where the hybrid model (a combination of data-driven model and computationally inexpensive partial
physics model (2D CFD)) is trained over high-fidelity 3D CFD or physical experiments, can address this challenge. A
brief description of the automated framework is given next.

B. Automated Riblet Design Framework
In order to be able to study and solve the optimization problem using to find the best drag reduction due to

the riblets with the minimum human interaction, we developed an automated framework [35], which integrates
disparate computational tools in batch mode. The design automation framework developed to solve the above-stated
optimization problems, for exploring the aerodynamic benefits of bio-inspired surface riblets, is illustrated in Fig. 4. This
computational framework is illustrated in Fig. 4 and it integrates the following major processes: 1) CFD simulations: for
end-to-end batch evaluation of the flow behavior with different ribleted 3D airfoil surfaces; 2) design of experiments: for
generation of training samples of riblet (CFD) evaluations that satisfy the geometric constraints in Eq. 4; and 3) hybrid
surrogate modeling and surrogate-based optimization: to time-efficiently identify riblet shapes with minimum drag
coefficient. Each of the major processes are developed either using existing open-source programs/libraries (the CFD
components) or our own implementations (the surrogate modeling and optimization components). Further descriptions
of the full physics model (including CAD modeling, mesh generation, CFD flow solver, and post processing) can be
found in Appendix. In the next, we describe the riblet geometry, the DoE and the optimization formulation, then we talk
in details about physics-aware hybrid model used in this problem.

DOE

Optimization

CAD Modeling Mesh Generation CFD Flow Solver Post-Processing

ℎ, �,�, ��

TC==True

Generate Sample Points
over Design Space

ℎ, �,�

Optimal Design
+ Surrogate-based Optimization
+ Hybrid Model or Surrogate Model 
+ Check Termination Criterion (TC)

, , , �ℎ
∗

�
∗

�
∗

�
∗

Generate STL file
using Salome

Generate mesh,
boundary, and patches
using SnappyHexMesh

Solve CFD and output
velocity pressure field
using OpenFoam

Post-process the CFD data and
extract co-efficient of drag and
pressure using Paraview

CFD Simulation

, ,ℎ
∗

�
∗

�
∗

Fig. 4 Overall optimization framework: integrating optimization algorithm with full physics CFD simulation
and hybrid model.
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C. The Geometry of Riblets
Different type of riblet shapes can be considered. Here, we choose a smooth riblet shape, which can be termed as

patterns of Gaussian-shaped ridge lines [35, 36]. The geometry of the Gaussian riblet is parameterized in terms of peak
height (ℎ), spacing (B) and the width (f) of the curve. Thus, any point I, on the ridgeline can be expressed as

I(H) = ℎ4−H2/f2
(1)

where −3f < H < 3f. As illustrated in Fig. 5, the pattern of ridgelines covers the entire top surface of the 3D airfoil
section, and the cross-sectional shape/size of the ridge does not change in the streamwise direction in our current
implementation. In most of the studies are conducted by changing the protrusion height (ℎ) and the spacing (B)
between the riblets to impede the streamwise vortices and their performance is measured based on a specific set of
non-dimensional parameters, to account for the change in size of the flow structures like vortex diameter, where ℎ+ and
B+ is given as follows:

ℎ =
ℎ+a

*g

√
2

�3,Barefoil
(2)

B =
B+a

*g

√
2

�3,Barefoil
(3)

Here a,*g and �3,Barefoil respectively represent the kinematic viscosity, the friction velocity, and the drag coefficient for
the airfoil without riblets (Barefoil). In this paper, we set the kinematic viscosity at a = 1.5 × 10−5. The drag coefficient,
�3 , is computed using CFD simulations (described in Section III.B).

Fig. 5 The shape and orientation of the Gaussian riblets; and the ridgelines on a NACA0012 airfoil section,
parallel to the free-stream velocity.

D. Optimization Formulation
It has been shown that the Gaussian riblets offer drag reductions on aerodynamic surfaces such as a 3D airfoil [36].

In this work, we pose it as a parametric shape optimization problem where the overall aerodynamic drag coefficient (�3)
of the ribleted surface is minimized. The problem is defined as finding the optimal riblet parameters (here, ℎ, B, and f)
to minimize the drag coefficient, which leads to drag reduction. To this end, the height, spacing and riblet thickness
parameter (f) are optimized for a single angle of attack (U = 2◦).

6



minimize
x={ℎ,B,f }

5 = �3 (x)

subject to 61 (x) : 6f − B ≤ 0
62 (x) : B − 6ℎ ≤ 0
63 (x) : f − 0.6ℎ ≤ 0

64 (x) : �3 (x) − � thresh
3 ≤ 0

(4)

Here ℎ ∈ [0.2, 0.6], B ∈ [0.72, 3.6] and f ∈ [0.12, 0.46], with the dimensions of ℎ, B being in millimeters. The first
constraint, 61 (.), is used to prevent adjacent Gaussian ridges from overlapping with each other. The second constraint,
62 (.) in Eq. (4) restricts the inter-ridge spacing to 6 times the height of the ridge. This constraint is motivated by the
work of Kennedy et al. [37], which reported that the height to spacing ratio should not be less than 1:6 in order to reduce
the burst frequency of the low speed streaks into the boundary layer, thereby reducing the momentum transfer. The third
constraint, 63 (.), mitigates the possibility of the Gaussian curve to flatten out, which would otherwise undermine the
favorable ability of riblets to impede the cross flow momentum. Based on prior literature [38–43], it was estimated that
for favorable drag alteration, the protrusion height of the riblet should lie in the range of [8, 50] wall units. Hence,
Eqs. (2)- (3) are used to identify suitable bounds for ℎ, B and f. The last constraint, 64 (.), is used to eliminate the
extrapolation error of each surrogate model. Here, the threshold value of the drag coefficient (� thresh

3
) is set at 0.0080.

E. Physics-aware Hybrid Modeling for Riblet Design Problem
As mentioned earlier in this section, a high-fidelity RANS CFD simulation is computationally expensive; each

single CFD simulation needs approximately 16 hours of computational time even by executing it on 32-core computing
node. On the other hand, the potential flow method is computationally inexpensive; evaluation of each simulation using
the partial physics model costs no more than ≈10 seconds – significantly lower than high-fidelity simulation (≈16 hours).
The potential flow method is widely have been applied in airfoil and aircraft designs for various applications [44, 45].
These characteristics inspired us to develop a physics-aware hybrid model using a potential flow analysis. Figure 6
shows the overall pipeline for evaluating a single design variable (ℎ, B, f) using both full physics model (RANS CFD
simulation) and our proposed physics-aware hybrid model. As it can be seen from this figure, the hybrid model can be
divided into three components, namely: 1) transfer model; 2) airfoil generator (as the first part of the partial physics
model); and 3) potential flow tool (the second component of the partial physics model). These components are described
in details in next.
Partial Physics Model: In this paper, we create a series of potential flow based airfoil models as the partial physics
models for the riblet design problem. The airfoils as the partial physics are smooth NACA 4 digit airfoils (to align with
the airfoil characteristics of the baseline airfoil (NACA0012) with variable thickness and curvatures. By adjusting the
thickness and curvature of the partial physics airfoil model, plus the flow conditions (Mach number, Reynolds number,
and angle of attack), we can mimic the flow characteristics (namely pressure distribution, lift or drag) of the airfoil with
riblets.

As shown in Fig. 6, the partial physics model contains two main components and it has 2 transferred inputs: Reynolds
number (#Re), and angle of attack (U). The first component is a custom code that generates the airfoil coordinates
([46, 47]) with given thickness and curvature (transfer model’s outputs) to be imported into the partial flow tool (i.e.,
XFOIL). XFOIL [48] is one of the available software tools for performing the potential flow based analysis. Our past
experiences [49] suggest that XFOIL gives reliable estimations of lift and drag under low Reynolds number. XFOIL
software receives the airfoil coordinates, Mach number, Reynolds number, and angle of attack as input and generates the
drag (�3) coefficient. An example output of XFOIL is depicted in Fig. 7. The transferred inputs are generated by the
transfer model, which will be discussed next.
Transfer Model: For this paper, transfer model is defined as two Gaussian process models with three inputs and one
output (Fig. 6). The inputs are the original inputs (x): height (ℎ), spacing (B), and width (f). The outputs of the transfer
model produce the transferred inputs z. In this paper, we use a supervised learning approach to learn the transfer model
("transfer : x→ z) because of the colossal difference of the computation time of the Partial Physics and the high fidelity
full physics. Here, we identify transfer (intermediate) inputs (z) of the actual partial physics equivalent model through
optimization process based on the given original inputs (x = [ℎ, B, f]). These optimized transfer inputs can be used for
supervised training of a model, a Gaussian process here, in the next step. For this purpose, we solve the optimization
problem explained in below:

minimize
z={#Re ,U}

5 = ‖(�FP
3 (x) − �

PP
3 (z)‖/�

Barefoil
3 (5)
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Full Physics Model
(RANS CFD Simulation)

Hybrid Model (OPTMA)

Partial Physics Model

Airfoil Generator
(Custom Code)

Potential Flow Tool
(XFOIL)

Transfer Model
(Gaussian Process)

height (ℎ)

spacing (𝑠)

distribution (𝜎)

Reynolds num. (𝑁𝑟𝑒)

Angle of attack (𝛼) 

Drag coef. (𝐶𝑑)

Pressure dist. (𝐶𝑝)

Lift coef. (𝐶𝑙)

Moment coef. (𝐶𝑚)

Original Inputs
Transferred Inputs

Outputs

Airfoil

Model

Computing Cost ≈ 16 hours

Computing Cost ≈ 0.40 seconds

Fig. 6 Physics-aware hybrid model vs. full physics model for riblet design problem. The physics-aware hybrid
model is significantly faster than the full physics model, ≈0.40 seconds vs. ≈16 hours

Fig. 7 An example output of XFOIL: estimating the pressure distribution (�?).

After obtaining the optimal transfer inputs (z8) for 8-th training sample (z8), we build an intermediate dataset
(Dtransfer = ∪8={1..#train }{x, z}). Then, a GP model ("transfer) is trained using this dataset.

IV. Results and Discussion

A. Results of Modeling
The feasible space of Gaussian riblets are bound by three linear constraints imposed to facilitate favorable flow

behavior and prevent geometric conflicts between consecutive riblets. We generate 57 samples only within the feasible
region, by adopting an approach called Latin Hypercube Sampling with Inequality Constraints (LHS-IC) [50]. In
order to measure the generalizablity power of each modeling technique (i.e., pure data-driven modeling (pure GP) vs.
physics-aware hybrid modeling (Phys-GP)), we split the dataset into two training and test dataset such that they have
different distributions (Fig. 8(a)). The number of sample points used for training and testing the surrogate models is
specified to be #train = 32 and #test = 25, respectively. Here, we are using a GP model with Gaussian kernel for both
GP and Phys-GP.

Figure 8(b) demonstrates the model error across test samples (unseen data) in terms of relative absolute error
(RAE = 100| (�actual

3
− �predict

3
)/�actual

3
|. It can be seen from this figure that the proposed Physics-aware hybrid model

(Phys-GP) outperforms the pure data-driven model (GP) in terms of both the median and the variance; the median
and maximum errors of the Phys-GP, respectively, are 0.5% and 2% (roughly two times more accurate than the pure
data-driven GP method). These results demonstrate the generalizability power of the hybrid model. It should be
mentioned that the hybrid model obtains this higher fidelity while keeping its computational cost tractable (< 0.40B).
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Fig. 8 Distribution of training and test dataset and the prediction error of the surrogate models using the test
dataset.
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Fig. 9 The convergence history of the optimization processes for the two methods (PhySBO and SBO) with
U = 2◦.

B. Results of Optimization
In this paper, we are using an advanced variation of PSO (MDPSO [31]) with the following settings for both our

proposed PhySBO and the standard SBO (SBO) approaches: a population size of PSO is set at #pop = 90, and the
maximum iteration is set at #MaxIter = 100. Figure 9 shows the convergence history of the standard SBO and our
proposed Phys-SBO approaches for 2◦ angle of attack. This plot shows the variation in the objective function (drag
coefficient) across iterations. In the primary Phys-SBO method, the drag coefficient reduced from 0.008650 to 0.008490
(based on surrogate model evaluations) over the optimization process. This variation is negligible for the SBO case
(reduced from 0.008497 to 0.008494).

Table 1 summarizes the optimization results, the optimal riblet shapes, and the following information: the drag
coefficient values corresponding to the optimized riblet shapes as given by the surrogate model and the high-fidelity CFD
model (and associated model error); and the % reduction in drag obtained compared to the bare 3D airfoil, expressed
as '�� = 100(�3,Barefoil − �3,Riblet)/�3,Barefoil (both values estimated using the high-fidelity CFD model). It can be
seen from Table 1 that the proposed Phys-SBO method found slightly better optimum with smaller prediction error at
optimum for the drag coefficient. The optimum riblet provides a 6.1% relative drag reduction at the angle of attack 2◦.

C. Flow Characteristics of the Optimum Design
In this section, we provide further analysis of the flow phenomena observed with the optimum riblet shape obtained

in the previous section. To understand the flow physics of how riblets impede the cross-stream translation of the
streamwise vortices, we visualize the flow near the airfoil surface. It can be seen from the near-wall contours of the
streamwise velocity (shown in Fig. 10(a)) that the protrusion of the riblets from the surface into the boundary layer
creates zones of high-speed and low-speed fluid regions. The low-speed fluid region comes in contact with the riblet

9



Table 1 Results of optimum riblet design with U = 2◦; #iter: Number of Iterations to Converge; ℎ: Optimum
Height in `<; B: Optimum Spacing in `<; f: Optimum Width in `<; RAE: Relative Absolute Error in
Surrogate Estimated Optimum �3 value; RDC: Reduction in Drag Coefficient compared to airfoil without
riblets.

Case #iter ℎ B f �∗
3,SM �∗

3,CFD Error
(RAE) [%]

Drag Reduction
(RDC) [%]

SBO 35 500.3 970.0 161.3 0.008494 0.008517 0.27 6.0
PhySBO 20 495.4 976.0 159.4 0.008490 0.008510 0.23 6.1

(a) Streamwise velocity (m/s) (b) Shear stress (N/m2)

Fig. 10 Contour plots of streamwise velocity and shear stress at G/2 = 0.3 for the optimal design (obtained by
PhySBO) at U = 2◦.

valleys which constitute a higher portion of the surface area whereas the high-speed fluid comes in contact only with the
riblet peaks.

In the ribleted airfoil, there exist different velocity gradients, attributed to low speed and high speed fluid regions
attributed to the surface riblets. The velocity gradients can be quantified here by measuring the shear stress (Fig. 10(b)).
Riblets demarcate the fluid into low speed and high speed regions, where the shear stress is simultaneously redistributed.
In this study, the riblets are aligned with the free-stream velocity and hence, a shift in the wall shear stress distribution
can be seen in the spanwise direction. Figure 10(b) shows how the shear stress varies around the riblet peaks and
valleys; while a small decrease in boundary layer thickness (Fig. 10(a)) and associated increase in shear stress Fig. 10(b)
is observed in the riblet peaks (compared to the bare airfoil), the riblet valleys realize a more dominant increase in
boundary layer thickness and associated lowering of shear stress, possibly contributing to the overall reduction in �3 .

V. Concluding Remarks
In this paper, we proposed a novel physics-aware surrogate-based optimization method, the so-called PhySBO, for

optimizing complex system in an efficient and reliable manner. The efficiency and the reliablity of the surrogate-based
optimization methods are strongly relied on the reliability of the surrogate model that used in the optimization process.
The pure data-driven surrogate models can perform poorly if the training dataset (seen samples) and the test dataset
(unseen samples) are from different distribution. It is quite often in real-world settings that the training and test samples
do not come from the same distributions. One way to address this issue is using physics-aware hybrid techniques that
show promising generalization and extrapolation. For this purpose, we integrated a physics-aware surrogate modeling
architecture (based on Gaussian process model) into a variation of the particle-swarm optimization (PSO) method. The
effectiveness of the proposed approach was evaluated by applying it to a ribleted airfoil design problem. The proposed
framework for the ribleted airfoil design incorporated the following components: an automated open-source CFD
framework (as full physics model) for generating high-fidelity samples, a GP with Gaussian kernel (as transfer model), a
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potential flow method (as partial physics model), and a particle-swarm optimization (as optimizer). The results proved
the proposed PhySBO method is able to find the optimum design with better performance than a traditional SBO (using
pure data-driven model) with higher accuracy. The proposed method also is capable to reduce each flow simulation from
7-16 hours to < 0.40 seconds (provide more than 105 times computing time reduction); the time efficiency achieved
is readily evident. A drag reduction, e.g., 6.1% when tailoring the height/spacing/width of riblets simultaneously, is
accomplished compared to that of a bare 3D airfoil.

Gaussian process models are favored since they provide a measure of uncertainty for their predictions, which
is critical for robust optimization. When the GP models are combined with other non-GP models, the uncertainty
measurement is not necessarily trivial when the GP model is embedded within a hybrid architecture. Thus, an important
direction of future work would be to extend our hybrid model such that it can give a tractable uncertainty measurement.
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Appendix

Automated Riblet Design Framework: Full Phyiscs Model

Geometry and Meshing
A finite span of the NACA0012 airfoil is considered with riblets placed on the top and bottom surface of the airfoil.

The airfoil contains a constant chord with an aspect ratio of 2. The chord length is 0.127m (5 inches) and is visualized in
Fig. 5 along with the riblets. The riblets are a continuous extraction of a 2D Gaussian curve, where the riblet valleys and
the peaks are aligned in the flow direction 5. Three-dimensional CAD model of symmetric NACA0012 airfoil is build
using the SALOME-8.3.0 and imported as an unstructured triangulated surface (.stl) with a precision of $ (10−2) mm.
The surface mesh is imported for volumetric grid generation carried out using SnappyHexMesh. To promote a greater
stability with reasonable mesh count, while capturing the boundary layer profile more accurately, hex cells are preferred.
Ten inflation layers are used with a growth rate of 1.2 and the smallest cell height is determined from H+ ∈ [5, 10].

Figure 12 shows the bounding domain, which is defined sufficiently large to avoid choke flow, as well as to have
minimal effects on the airfoil. To reduce the computational cost of the analysis, a symmetry plane is used and hence all
the results are visualized on a half wing. The mesh generated in the domain approximately consists of 8 million cells.
Fig. 11(a) shows the prism layer around the NACA0012 airfoil and a sliced section of the mesh accurately capturing the
Gaussian riblet curve can be seen in Fig. 11(b).
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(a) The prism Layers around the NACA0012 airfoil. (b) The mesh around the Gaussian riblets.

Fig. 11 The prism layers and mesh around the airfoil and the Gaussian riblets.

Boundary Conditions
The CFD simulations are carried out in a bounded box with a 2D illustration shown in Fig 12. The domain has

a velocity inlet (free-stream) with a constant velocity input. At the outlet, pressure outlet for the pressure
is provided and zeroGradient for the velocities. At the top, bottom and side wall we have slip condition for
the velocities and zeroGradient for the pressure. A symmetry plane boundary condition is used to reduce the
computational time, and noSlip boundary conditions is applied on the airfoil. The flow being transitional region, a
3.2% of turbulent intensity is given at the inlet. The turbulent kinetic energy (TKE) and the omega (l) at the inlet are
calculated using the following equations:

� = 0.16#−1/8
Re (6)

: = 1.5(*�)2 (7)

l = 0.9−1/4√:/; (8)

Fig. 12 The bounding domain.

Solver Settings
An open source tool, OpenFOAM, is used to perform the CFD simulations. A pressure-based solver is used with

: − l SST [51] turbulence models for wall bounded wall flow. The incoming #Re = 3.38G105, is calculated with a
chord as the characteristic length, which is in the transitional ranger from laminar to turbulent. The fluid considered
here is air, and treated as incompressible, as the Mach number is less than 0.4. The pressure and velocity are coupled
using the SIMPLE scheme. For spatial discretization and to calculate gradient of velocity (∇*), linear Upwind scheme
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is used. As stated above, the whole process is automated to evaluate multiple designs, Simulations are carried out
with a termination criteria of $ (10−6). To shorten the computation time,MPI library is used to parallelize the whole
computation, and the simulations are performed using the distributed computing cluster (CCR) at the University of
Buffalo. The primary quantities of interest obtained and derived from the CFD simulations are the shear stress data and
co-efficient of drag.
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